BAB IV

HASIL DAN PEMBAHASAN

4.1 Identifikasi Bahaya

Prosedur pertama dari penelitian ini adalah mengidentifikasi potensi bahaya dari setiap aktivitas yang sudah ditentukan. Prosedur dalam mengidentifikasi potensi bahaya tersebut berdasarkan dengan *standard* OHSAS 18002:2008 yang merupakan pedoman lebih lanjut dari *standard* OHSAS 18001:2007 mengenai identifikasi bahaya. Berikut ini adalah daftar potensi bahaya dari setiap aktivitas yang ditunjukkan pada tabel 4.1 dibawah ini:

Tabel 4.1 Identifikasi Bahaya Berdasarkan OHSAS 18002:2008

No	Uraian Aktivitas	ID	Potensi Ba <mark>haya</mark>	Kode Potensi Bahaya	Kriteria Bahaya
1	Persiapan alat	A	Body chainblock dan lever hoist terlalu berat dibawa secara manual	1A	Psikososial
	lever hoist	В	Rantai dan gear berkarat	1B	Kimia
2	Persiapan pipa	A	Pipa yang dibawa terlalu berat secara manual	2A	Psikososial
	scaffolding	В	Permukaan pipa berkarat	2B	Kimia
3	Persiapan alat	A	Alat klem yang tidak sesuai ukuran scaffolding	3A	Fisik
	klem	В	Pengunci klem rusak	3B	Fisik
5		A	Permukaan webbing sling yang rusak	4A	Fisik
4	Persiapan webbing sling	В	Kapasitas kekuatan webbing sling tidak sesuai dengan berat struktur yang diangkat	4B	Fisik

T	Tabel 4.1 Identifikasi Bahaya Berdasarkan OHSAS 18002:2008 (Lanjutan)								
No	Uraian Aktivitas	ID	Potensi Bahaya	Kode Potensi Bahaya	Kriteria Bahaya				
	Persiapan	A	Kunci pas mengalami aus (terkikis)	5A	Kimia				
5	wrench tool (kunci pas)	В	Kunci pas tidak sesuai dengan ukuran equipment anchoring	5B	Fisik				
	Persianan hor	A	Lapisan kabel terkelupas/terbuka	6A	Fisik				
6	6 Persiapan bor listrik	В	Beban alat bor terlalu berat dibawa secara manual	6B	Psikososial				
7	Persiapan struktur maintenance access platform		Kondisi cuaca pada saat persiapan struktur maintenance access platform	7A	Fisik				
-	Persiapan stud bold dan chemical	A	Ulir stud bold dan chemical anchor yang berkarat	8A	Kimia				
8	anchor (equipment anchoring)	В	Material stud bold dan chemical anchor yang tidak tertata/berantakan	8B	Fisik				
9	Persiapan sika grout 215 dan cement	A	Beban sika grout 215 dan cement terlalu berat dibawa secara manual	9A	Psikososial				
	Mengangkut material dan peralatan	A	Beban material dan peralatan yang dibawa terlalu berat secara manual	10A	Psikososial				
10	secara manual serta menggunakan	В	Pekerja tidak ahli mengoperasikan forklift	10B	Psikososial				
	forklift	С	Mengangkat material dan peralatan tidak sesuai	10C	Psikososial				

Ta	abel 4.1 Identifikas	si Bal	haya Berdasarkan OHS A	AS 18002:2008	(Lanjutan)
No	Uraian Aktivitas	ID	Potensi Bahaya	Kode Potensi Bahaya	Kriteria Bahaya
			prosedur		
		D	Material dan peralatan d atas truk tidak diikat sesuai prosedur	i 10D	Psikososial
		Е	Kapasitas <i>forklift</i> tidak sesuai dengan berat obje yang diangkut	k 10E	Psikososial
		F	Kondisi cuaca pada saat loading material dan peralatan ke atas truk	10F	Fisik
4	50		Bekerja di ketingg <mark>ian sa</mark> memasang rangk <mark>a utama scaffolding</mark>		Fisik
	Scaffolding -	В	Klem tidak terkunci dengan baik	O11B	Fisik
11	erection	С	Kondisi <i>scaffoldin</i> g basa dan licin	h 11C	Fisik
		D	Tanah tidak rata (miring) 11D	Fisik
		Е	Kondisi cuaca dalam pemasangan scaffolding	11E	Fisik
	Menentukan posisi dan	A	Tumpuan scaffolding tidak kuat menahan beban	12A	Fisik
12	pemasangan 12 chainblock yang aman pada	В	Tumpuan <i>chainblock</i> terlalu tinggi	12B	Fisik
		С	Bekerja di ketinggian saa memasang <i>chainblock</i>	at 12C	Fisik
	scaffolding –		Pemasangan <i>chainblock</i> tidak tepat (miring)	12D	Fisik

Tabel 4.1 Identifikasi Bahaya Berdasarkan OHSAS 18002:2008 (Lanjutan)								
No	Uraian Aktivitas	ID	Potensi Bahaya	Kode Potensi Bahaya	Kriteria Bahaya			
		Е	Kondisi cuaca pada saat pemasangan <i>chainblock</i>	12E	Fisik			
		A	Bekerja di ketinggian saat mengaitkan struktur dengan webbing sling/chainblock	13A	Fisik			
	Pengangkatan struktur maintenance	В	Lifting gear yang tidak sesuai kapasitas beban struktur maintenance access platform	13B	Fisik			
13	access pl <mark>atfor</mark> m	С	Rantai chainblock terputus	13C	Fisik			
	de <mark>ngan</mark> chainblock	D	Webbing sling terputus	13D	Fisik			
	menggunakan webbing sling	E	Kondisi cuaca pada saat pemasangan struktur	13E	Fisik			
	weoding sting	F	Struktur maintenance access platform membentur jalur pipa condensate tank saat ditegakkan	13F	Fisik			
	Mengangkat dan memasang	A	Bekerja di ketinggian saat mengatur posisi struktur pendukung untuk diletakkan	14A	Fisik			
14	grating plate, pelindung	В	Lifting gear yang tidak sesuai kapasitas berat struktur pendukung	14B	Fisik			
	tangga dan pembatas <i>deck</i> kedua	С	Area scaffolding tidak lebih lebar dari struktur pendukung	14C	Fisik			
		D	Tumpuan kaki pada pipa scaffolding licin	14D	Fisik			

Ta	abel 4.1 Identifika	si Ba	haya Berdasarkan OHSAS	18002:2008	(Lanjutan)
No	Uraian Aktivitas	ID	Potensi Bahaya	Kode Potensi Bahaya	Kriteria Bahaya
		Е	Kondisi cuaca pada saat pemasangan struktur pendukung	14E	Fisik
		F	Struktur pendukung membentur jalur pipa minyak <i>condensate tank</i> saat diangkat	14F	Fisik
15	Pengeboran pada lantai	A	Mata terkena pecahan lantai/debu beton eksisting	15A	Fisik
	beton existing	В	Menimbulkan kebis <mark>ingan</mark>	15B	Fisik
V	Pemasangan dan pengencangan	A	Hasil pengeboran lubang chemical anchor miring	16 A	Fisik
16	equipment anchoring (stud bold dan chemical anchor)	В	Equipment anchoring tidak terpasang d <mark>e</mark> ngan kuat	16B	Fisik
17	Membuat fondasi (grouting)	A	Campuran <i>sika grout</i> atau <i>cement</i> tidak se suai prosedur	17A	Psikososial
1,	dengan sika grout 215 dan cement	В	Kondisi cuaca saat melakukan pengecoran	17B	Fisik
	Melepas klem di setiap sudut yang aman dan	A	Bekerja di ketinggian saat melepas semua pipa scaffolding	18A	Fisik
18	menurunkan	В	Pipa scaffolding terjatuh	18B	Fisik
	pipa scaffolding	С	Kondisi cuaca pada saat pelepasan <i>scaffolding</i>	18C	Fisik

Sumber: Pengolahan Penulis. 2023

Berdasarkan tabel 4.1, didapatkan bahwa 53 potensi bahaya dalam pekerjaan instalasi struktur *maintenance access platform* dengan kriteria bahaya fisik sebanyak 39 yang mayoritas berhubungan dengan kegiatan pekerjaan, kriteria bahaya kimia sebanyak 4 yang berhubungan dengan kondisi material atau peralatan dan kriteria bahaya psikososial sebanyak 10 berhubungan dengan kontrol manajemen dan kemampuan pekerja.

Contoh kode potensi bahaya 18C dikategorikan sebagai kriteria bahaya fisik, karena berdasarkan standard OHSAS 18002:2008 potensi bahaya tersebut termasuk dalam point kondisi suhu di lapangan kerja yang tidak cocok sehingga menyebabkan hipotermia dan heat stress. Kondisi cuaca yang dimaksud adalah cuaca hujan lebat maupun cuaca panas terik. Cuaca hujan lebat dapat berbahaya karena dalam pengerjaan aktivitas tersebut berada di ketinggian, lalu suhu yang dihasilkan saat cuaca hujan bisa menjadi sangat rendah yang menyebabkan pekerja terkena hipotermia apabila melakukan pekerjaan terlalu lama. Apabila cuaca panas terik dalam aktivitas melepas scaffolding juga dapat berbahaya akibat dari suhu tinggi melalui pancaran sinar matahari membuat pekerja cepat mengalami kelelahan maupun dehidrasi.

4.2 Penilaian Risiko

Hasil dari penilaian risiko ini didapatkan dari kuesioner yang sudah disusun oleh peneliti, setelah itu dilakukan perhitungan rata-rata untuk skala *likelihood* dan consequence yang ditunjukkan oleh persamaan 2.1 dan 2.2, setelah mendapat nilai rata-rata dari skala *likelihood* dan skala consequence dilakukan perhitungan risk rating menggunakan persamaan 2.3. Berikut adalah detail dari penilaian risiko yang sudah didapatkan yang ditunjukkan oleh tabel 4.2 dibawah ini sebagai berikut:

Tabel 4.2 Penilaian Risiko Berdasarkan AS/NZS 4360:2004

Kode Potensi	Rata-Rata	Rata-Rata	Risk Rating	Tingkat
Bahaya	Likelihood	Consequence	$\overline{L}x\overline{C}$	Risiko
Danaya	$(ar{m{L}})$	(\overline{C})		AUDINO
1A	3	2	6	Medium
1B	3	2	6	Medium
2A	3	2	6	Medium
2B	3	2	6	Medium
3A	2	2	4	Low
3B	3	3	9	High
4A	2	4	8	<mark>Medi</mark> um
4B	2	4	8	M edium
5A	2	/2	40 (Low
5B	$\frac{2}{2}$	2	4	Low
6A	2	4	8	Medium
6B	2	2	4	Low
7A	3	3	9	High
8A	2	2	4	Low
8B	2	2	4	Low
9A	2	2	4	Low
10A	2	2	4	Low
10B	2	3	6	Medium
10C	3	3	9	High
10D	2	3	6	Medium
10E	2	3	6	Medium
10F	2	2	4	Low
11A	5	4	20	Very High
11B	3	4	12	High

Tabel 4.2 Penilaian Risiko Berdasarkan AS/NZS 4360:2004 (Lanjutan)								
Kode Potensi Bahaya	Rata-Rata Likelihood (L)	Rata-Rata Consequence (\overline{C})	Risk Rating <u>L</u> x C	Tingkat Risiko				
11C	3	3	9	High				
11D	2	2	4	Low				
11E	3	2	6	Medium				
12A	2	4	8	Medium				
12B	2	2	4	Low				
12C	5	4	20	Very High				
12D	4	3	12	High				
12E	3	2	6	Medium				
13A	740	4 /\	16	High				
13B	2	3	6	Medium				
13C	2	4 //	8	M <mark>ediu</mark> m				
13D	2	4	8	Medium				
13E	3	2	6	Medium				
13F	2	4	8	Medium				
14A	5	4	20	Very High				
14B	2	4	8	Medium				
14C	2	2	4	Low				
14D	2	3	6	Medium				
14E	2	2	4	Low				
14F	2	4	8	Medium				
15A	2	3	6	Medium				
15B	3	2	6	Medium				
16A	3	2	6	Medium				
16B	2	3	6	Medium				

Tabel 4.2 Penilaian Risiko **Berdasarkan AS/NZS 4360:2004** (*Lanjutan*) Rata-Rata Rata-Rata Risk Rating **Kode Potensi Tingkat** Likelihood Consequence $\bar{L}x\bar{C}$ Bahaya Risiko (\bar{L}) (\overline{C}) 2 2 17A 4 Low 2 2 17B 4 Low 18A 5 4 20 Very High 3 18B 4 12 High 2 18C 2 4 Low

Sumber: Pengolahan Penulis. 2023

Berdasarkan tabel 4.2, menunjukkan bahwa hasil penilaian dari lima responden tersebut akan memberikan gambaran mengenai tingkatan risiko setiap potensi bahaya. Dalam menentukan tingkatan risikonya, sebuah potensi bahaya terlebih dahulu diperhitungkan nilai rata-rata *likelihood* dan nilai rata-rata *consequence* (Aprilla, 2023). Nilai rata-rata *likelihood* dan *consequence* didapatkan dengan menjumlahkan jawaban semua responden di skala tersebut lalu dibagi dengan banyaknya jumlah responden, dapat dilihat pada persamaan 2.1 dan persamaan 2.2. Masing-masing skala tersebut akan menghasilkan angka koma yang kemudian dibulatkan keatas untuk mempermudah dalam menghitungnya (Fathimahhayati, 2019). Hasil dari perkalian rata-rata dua skala tersebut kemudian akan diperhitungkan dengan persamaan 2.3 yang akan menghasilkan *risk rating* dan tingkatan risiko dari 1 potensi bahaya (*AS/NZS* 4360:2004). Cara ini digunakan disemua potensi bahaya untuk mendapatkan *risk rating* dan tingkatan risikonya.

Contohnya pada kode potensi bahaya 18C dikategorikan sebagai *low risk*. Hal ini dapat disimpulkan karena dari nilai rata-rata *likelihood* adalah 2 dan rata-rata *consequence* adalah 2, sehingga nilai *risk rating*nya adalah 4 setelah dilakukan pembulatan. Hasil dari penilaian risiko dari 53 potensi bahaya dapat disimpulkan bahwa terdapat 16 kategori *low risk*, 25 kategori *medium risk*, 8 kategori *high*

risk dan 4 kategori very high risk. Rincian aktivitas dari tingkatan low risk terdapat pada persiapan peralatan, mengangkut material secara manual dan menggunakan alat bantu angkat. Tingkatan medium risk terdapat pada aktivitas pengangkatan struktur maintenance access platform dan pemasangan struktur pendukung. Tingkatan high risk terdapat pada aktivitas pemasangan scaffolding dan pelepasan scaffolding. Tingkatan very high risk terdapat pada aktivitas pekerjaan yang dilakukan di ketinggian.

4.3 Pengendalian Risiko

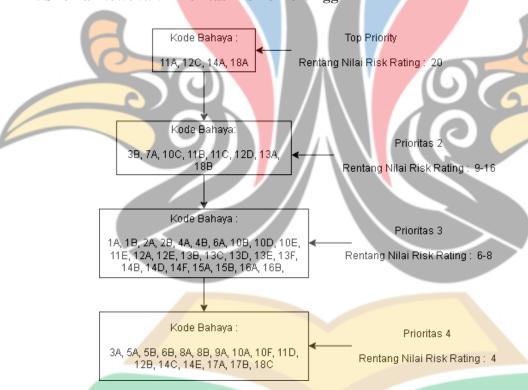
Prosedur selanjutnya adalah menentukan pengendalian risiko berdasarkan hierarki pengendalian risiko (OHSAS 18001, 2007). Hierarki pengendalian yang terdiri dari eliminasi, substitusi, rekayasa *engineering*, pengendalian administratif dan APD/PPE. Menentukan hierarki pengendalian risiko dilakukan dari yang paling efektif yaitu eliminasi dan langkah terakhir yaitu APD/PPE. Berikut adalah pengendalian risiko yang sudah dilakukan dalam pekerjaan instalasi *maintenance* access platform yang diperlihatkan pada tabel 4.3 dibawah ini:

Tabel 4.3 Pengendalian Risiko Yang Telah Dilakukan

				I	Iierarki	Pengendalian Ri	isiko
Kode Potensi Bahaya	Potensi Bahaya	Tingkat El Risiko mi as		Sub stitu si	Reka yasa Engin eering	Administrasi	APD/PPE
						Mencari	
						metode yang	Menggunakan
						aman dengan	APD seperti:
	Kondisi					memberhentik	safety shoes,
18C	cuaca saat	Low				an pekerjaan	helm safety,
180	pelepasan	Low		_		karena	sarung tangan
	scaffolding					mayoritas	kulit, coverall,
						pekerjaan	body harness,
						dilakukan di	safety glasses
						ketinggian	

Sumber: Pengolahan Penulis. 2023

Berdasarkan hasil wawancara terhadap HSE officer didapatkan hasil diskusi pengendalian risiko yang sudah dilakukan dan dituliskan pada tabel 4.4 dan pada lampiran 3. Sebagai contoh, pada kode potensi bahaya 18C dimana potensi bahayanya adalah kondisi cuaca saat pelepasan scaffolding mendapatkan tingkatan risiko kategori low risk, maka pengendalian risiko yang telah dilakukan adalah administrasi berupa tindakan mencari metode yang aman dengan memberhentikan pekerjaan dikarenakan mayoritas pekerjaan dilakukan di ketinggian, serta menggunakan alat pelindung diri (APD) yang lengkap dimulai dari safety shoes, helm safety, sarung tangan berbahan kulit, coverall dan body harness. Tindakan pengendalian tersebut menurut HSE officer adalah langkah yang paling efektif dalam menanggulangi potensi bahaya 18C tersebut.


Berdasarkan tabel 4.3, dari 53 potensi bahaya dapat dikelompokkan 4 tingkatan risiko yaitu very high risk, high risk, medium risk dan low risk. Pada tingkatan low risk didapatkan hierarki pengendalian dengan metode eliminasi sebanyak 1 kali, metode substitusi sebanyak 7 kali, metode rekayasa engineering sebanyak 3 kali, metode administrasi sebanyak 6 kali dan metode APD sebanyak 16 kali. Pada tingkatan medium risk didapatkan hierarki pengendalian dengan metode eliminasi sebanyak 0 kali, metode substitusi sebanyak 10 kali, metode rekayasa engineering sebanyak 5 kali, metode administrasi sebanyak 9 kali dan metode APD sebanyak 25 kali. Pada tingkatan high risk didapatkan hierarki pengendalian dengan metode eliminasi sebanyak 0 kali, metode substitusi sebanyak 2 kali, metode rekayasa engineering sebanyak 2 kali, metode administrasi sebanyak 4 kali dan metode APD sebanyak 8 kali. Pada tingkatan very high risk didapatkan hierarki pengendalian dengan metode eliminasi, substitusi, rekayasa engineering sebanyak 0 kali, metode administrasi sebanyak 4 kali dan metode APD sebanyak 4 kali.

Disimpulkan bahwa dari seluruh kelompok tingkatan risiko mayoritas metode hierarki pengendalian risiko yang dilakukan adalah substitusi, administrasi dan APD, sedangkan hanya beberapa dengan metode eliminasi dan rekayasa *engineering*.

4.4 Rekomendasi Skema Pengendalian Risiko

Pembuatan rekomendasi skema pengendalian risiko prioritas ini berdasarkan pada risiko tertinggi dan risiko yang sering terjadi. Hal ini dilakukan untuk memberikan rekomendasi terhadap PT Mesitechmitra Purnabangun untuk melakukan langkah yang tepat dalam penanggulangan risiko dari setiap potensi bahaya yang sudah diidentifikasi. Peneliti juga menambahkan saran pengendalian tambahan dengan harapan dapat menurunkan tingkatan risiko tertinggi menjadi tingkatan risiko rendah.

1. Skema Flowchart Prioritas Risiko Tertinggi

Gambar 4.1 Skema Flowchart Prioritas dengan Risiko Tertinggi

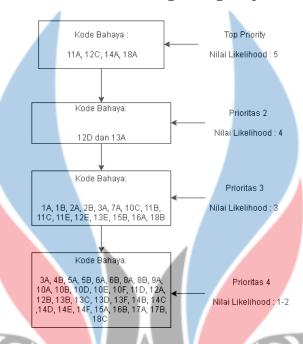
Pada gambar 4.1 terdapat rentang nilai *risk rating* tersebut merupakan hasil perkalian nilai rata-rata *likelihood* dan *consequence* dari setiap potensi bahaya. *Top priority* memiliki rentang nilai risk rating dari 20, prioritas 2 memiliki rentang nilai 9-

16, prioritas 3 memiliki rentang nilai 6-8 dan prioritas 4 memiliki rentang nilai 4. Berdasarkan skema *flowchart* prioritas tersebut yang menjadi *top priority* adalah kode potensi bahaya 11A, 12C, 14A dan 18A yang memiliki risiko paling tinggi dari potensi bahaya lainnya yaitu kategori *very high risk* dengan nilai *risk rating* 20. *Standard* OHSAS 18002:2008 menyebutkan bahwa dalam penetapan prioritas tindakan, organisasi harus mempertimbangkan potensi pengurangan risiko yang direncanakan, akan lebih baik jika memprioritaskan tindakan dengan kategori berisiko tinggi. Penelitian terdahulu dalam objek penelitiannya menganalisis potensi bahaya di area *crusher* dan *belt conveyor* mengatakan bahwa jika potensi risiko sudah pada tingkat tinggi maka perlu pengendalian risiko secara cepat (Aprilla & Yulhendra, 2023).

Berdasarkan skema tersebut pada potensi bahaya 11A, 12C, 14A dan 18A memiliki kategori risiko paling tinggi, namun pengendalian yang dilakukan hanya pada administrasi dan APD. Peneliti dalam hal ini memberikan saran pengendalian risiko tambahan (ditandai dengan tidak diberi *highlight* abu-abu) dengan harapan dapat menurunkan tingkatan risiko tersebut menjadi lebih rendah yang dapat dilihat pada tabel 4.5 dibawah ini serta pada lampiran 3:

Tabel 4.4 Alternatif Pengendalian Risiko

Kode	Potensi	Tingkat			Hie <mark>rarki P</mark> engendali	an Risiko	
Potensi Bahaya	Bahaya	an Risiko	Eliminas i	Substitu si	Rekaya <mark>sa</mark> Engineering	Administrasi	APD
11A	Bekerja di ketinggian saat memasang rangka utama scaffolding	Very High			Melakukan tes pembebanan pada tali <i>body</i> <i>harness</i> , Memasang struktur bawah <i>scaffolding</i> dengan kokoh dan stabil, Memasang klem dengan kuat	Memastikan metode pelaksanaan yang tepat dan peralatan yang digunakan layak dipakai, Membuat permit to work dan JSA, Melakukan safety talk	Menggunakan APD seperti: safety shoes, helm safety, sarung tangan kulit, coverall, body harness, safety glasses
12C	Bekerja di ketinggian saat memasang chainblock	Very High			Melakukan tes pembebanan pada tali body harness dan webbing sling, Memastikan struktur bawah scaffolding dalam keadaan kokoh dan stabil, Memasang chainblock dengan kuat	Memastikan metode pelaksanaan yang tepat dan peralatan yang digunakan layak dipakai, Membuat permit to work dan JSA, Melakukan safety talk	Menggunakan APD seperti: safety shoes, helm safety, sarung tangan kulit, coverall, body harness, safety glasses


			Tabel 4.4	Alternatif Pe	ng <mark>endali</mark> an Risiko (<i>Lanjutan</i>)				
Kode	Potensi Tingkat				Hierarki Pengendalian Risiko				
Potensi Bahaya	Bahaya	an Risiko	Eliminas i	Substitu si	Rekayasa Engineering	Administrasi	APD		
14A	Bekerja di ketinggian saat mengatur posisi struktur pendukung untuk diletakkan	Very High			Melakukan tes pembebanan pada tali body harness dan webbing sling, Memastikan struktur bawah scaffolding dalam keadaan kokoh dan stabil, Memasang webbing sling pada struktur dengan kuat	Memastikan metode pelaksanaan yang tepat dan peralatan yang digunakan layak dipakai, Membuat permit to work dan JSA, Melakukan safety talk	Menggunakan APD seperti: safety shoes, helm safety, sarung tangan kulit, coverall, body harness, safety glasses		
18A	Bekerja di ketinggian saat melepas semua pipa scaffolding	Very High			Melakukan tes pembebanan pada tali <i>body harness</i> , Menggunakan tali tambahan untuk menurunkan pipa <i>scaffolding</i>	Memastikan metode pelaksanaan yang tepat dan peralatan safety yang digunakan layak dipakai, Membuat permit to work dan JSA	Menggunakan APD seperti: safety shoes, helm safety, sarung tangan kulit, coverall, body harness, safety glasses		

Sumber: Pengolahan Penu<mark>lis. 202</mark>3

Kode potensi bahaya 11A dalam saran pengendaliannya adalah berupa tes pembebanan pada tali body harness, tes ini untuk menguji kekuatan tali body harness apakah kuat dalam menahan beban pekerja dalam jangka waktu panjang serta mendeteksi apakah tali body harness tersebut memiliki tanda kecacatan atau tidak. Lalu memasang struktur scaffolding bagian bawah dengan kokoh dan stabil, karena dalam pemakaiannya scaffolding ini untuk dibebankan oleh pekerja dan juga untuk menegakkan struktur maintenance access platform menggunakan chainblock yang terikat dengan scaffolding. Lalu pada administrasi berupa pembuatan permit to work dan JSA serta melakukan safety talk, hal ini bertujuan mendata berat beban yang diangkat dan izin kerja yang disetujui, potensi bahaya yang dapat terjadi serta menghindari kejadian yang tidak diinginkan selama pekerjaan berlangsung.

Hierarki pengendalian metode eliminasi pada kode potensi bahaya 11A, 12C, 14A dan 18A tidak mungkin dilakukan, karena bekerja di ketinggian tidak dapat dihindari ketika melakukan semua pekerjaan tersebut. Hierarki pengendalian metode substitusi juga tidak dimungkinkan dengan alternatif lainnya seperti *crane*, karena lokasi *site area* terlalu sempit untuk *crane* melakukan manuver dan dapat mengenai struktur lain yang berada di dekat lokasi tersebut.

2. Skema Flowchart Prioritas Risiko Yang Sering Terjadi

Gambar 4.2 Skema Flowchart Prioritas Risiko Yang Sering Terjadi

Berbeda dengan yang sebelumnya, pada skema flowchart ini ditentukan dengan risiko yang sering terjadi, dilihat dari nilai likelihood yang tertinggi seperti pada top priority memiliki nilai likelihood 5, prioritas 2 memiliki nilai likelihood 4, prioritas 3 memiliki nilai likelihood 3 dan prioritas 4 memiliki nilai likelihood 1-2. Penelitian sebelumnya dalam objek penelitiannya yaitu risk assessment pada pengoperasian scaffolding pada proyek apartemen menyebutkan bahwa pengendalian risiko yang paling mungkin dilakukan adalah yang menggunakan nilai likelihood dalam pengendaliannya, karena nilai likelihood lebih memungkinkan untuk menurunkan tingkatan risiko dibandingkan dengan nilai consequence (Bagus dkk., 2015)

Berdasarkan gambar 4.2, menunjukkan bahwa *top priority* dalam kategori risiko yang sering terjadi adalah pada kode potensi bahaya 11A, 12C, 14A dan 18A karena memiliki nilai *likelihood* yang paling tinggi yaitu angka 5. Berdasarkan *standard* AS/NZS 4360:2004 pada nilai *likelihood* yang paling tinggi yaitu angka 5, merupakan kasus yang terjadi 1 kali atau lebih dalam satu hari