IMPLEMENTASI MASKED FACE RECOGNITION MENGGUNAKAN FPGA SEBAGAI HARDWARE ACCELERATOR DENGAN ALGORITMA Tiny YOLOv3-Submit Jurnal

Rahmat, Zaky Nur (2025) IMPLEMENTASI MASKED FACE RECOGNITION MENGGUNAKAN FPGA SEBAGAI HARDWARE ACCELERATOR DENGAN ALGORITMA Tiny YOLOv3-Submit Jurnal. Bachelor thesis, Institut Teknologi Kalimantan.

[img] Text
04211088_Cover.pdf - Cover Image
Restricted to Repository staff only until 4 October 2027.

Download (393kB) | Request a copy
[img] Text
04211088_Statement_Of_Authenticity.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (447kB) | Request a copy
[img] Text
04211088_Publishing_Agreement.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (530kB) | Request a copy
[img] Text
04211088_Approval_Sheet.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (581kB) | Request a copy
[img] Text
04211088_Preface.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (481kB) | Request a copy
[img] Text
04211088_Abstract_ID.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (387kB) | Request a copy
[img] Text
04211088_Abstract_Eng.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (401kB) | Request a copy
[img] Text
04211088_Table_Of_Content.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (684kB) | Request a copy
[img] Text
04211088_Ilustrations.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (305kB) | Request a copy
[img] Text
04211088_Tables.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (211kB) | Request a copy
[img] Text
04211088_Notation.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (127kB) | Request a copy
[img] Text
04211088_Table_Of_Listing.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (203kB) | Request a copy
[img] Text
04211088_Chapter_1.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (1MB) | Request a copy
[img] Text
04211088_Chapter_3.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (6MB) | Request a copy
[img] Text
04211088_Chapter_4.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (7MB) | Request a copy
[img] Text
04211088_Conclusion.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (622kB) | Request a copy
[img] Text
04211088_Bibliography.pdf - Bibliography
Restricted to Repository staff only until 4 October 2027.

Download (1MB) | Request a copy
[img] Text
04211088_Enclosure.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (2MB) | Request a copy
[img] Text
04211088_Paper.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (750kB) | Request a copy
[img] Text
04211088_Form.TA-020.pdf - Submitted Version
Restricted to Repository staff only until 4 October 2027.

Download (195kB) | Request a copy

Abstract

Pengenalan wajah bermasker merupakan tantangan dalam sistem identifikasi visual, terutama pada aplikasi real-time di lingkungan publik. Penelitian ini mengembangkan sistem pengenalan wajah bermasker berbasis Tiny YOLOv3 yang diimplementasikan secara real-time dengan akselerasi perangkat keras menggunakan FPGA PYNQ-Z2. Tahap pra-pemrosesan gambar (resize, grayscale, threshold) dilakukan di FPGA menggunakan IP Core hasil rancangan di Vitis HLS, sementara proses inferensi dijalankan di CPU dengan model dalam format ONNX. Pengujian dilakukan pada dua konfigurasi: pemrosesan penuh di CPU dan kombinasi FPGA–CPU. Hasil menunjukkan bahwa sistem dengan FPGA memiliki kecepatan rata-rata 15,49 FPS dan konsumsi daya 14,55 W, lebih baik dibandingkan CPU dengan 11,76 FPS dan konsumsi daya 27,42 W. Confidence Threshold deteksi pada FPGA mencapai 61%, sedikit lebih tinggi dari CPU yang sebesar 58%. Implementasi ini menunjukkan bahwa integrasi FPGA mampu meningkatkan efisiensi sistem baik dari sisi kecepatan maupun konsumsi daya, sehingga layak digunakan untuk aplikasi deteksi real-time yang efisien dan responsif.

Item Type: Thesis (Bachelor)
Subjects: T Technology > T Technology (General)
Divisions: Jurusan Teknologi Industri dan Proses > Teknik Elektro
Depositing User: Zaky Nur Rahmat
Date Deposited: 11 Jul 2025 01:45
Last Modified: 11 Jul 2025 01:45
URI: http://repository.itk.ac.id/id/eprint/23894

Actions (login required)

View Item View Item