

TUGAS AKHIR

PERENCANAAN LIFT BARANG PADA GEDUNG A KAMPUS INSTITUT TEKNOLOGI KALIMANTAN

Pianti Putriana Panjaitan NIM. 07211068

Dr. Ir. Hijriah, ST., MT. Fachreza Akbar, ST., MT.

Program Studi Teknik Sipil Jurusan Teknik Sipil dan Perencanaan Fakultas Pembangunan Berkelanjutan Institut Teknologi Kalimantan Balikpapan, 2025

KATA PENGANTAR

Puji syukur kehadirat Tuhan Yang Maha Esa karena telah memberikan kesempatan kepada saya untuk menyelesaikan proposal tugas akhir. Atas rahmat dan hidayah-Nya saya dapat menyelesaikan proposal tugas akhir yang berjudul:

"PERENCANAAN LIFT BARANG PADA GEDUNG A KAMPUS INSTITUT TEKNOLOGI KALIMANTAN"

Laporan tugas akhir ini merupakan salah satu syarat yang harus ditempuh untuk menyelesaikan Program Sarjana di Program Studi Teknik Sipil, Jurusan Teknik Sipil dan Perencanaan, Institut Teknologi Kalimantan (ITK) Balikpapan. Penulis mengucapkan terima kasih kepada:

- Yesus sebagai teman dan sahabat yang selalu menemani dikala sedih dan putus asa, membantu segala kesusahan dan cobaan selama mengerjakan proposal ini.
- 2. Bapak Humisar Panjaitan, Ibu Remlina Pasaribu, Almh. Liber Panjaitan, Ibu Hormat Mairda Simanjuntak, Kakak Fitri Cahayana Panjaitan, Adik Alex Aldi Panjaitan, Adik Marvel Jusuf Panjaitan, Adik Rido Panjaitan, Adik Dahlia Panjaitan, Bapak Bahasa Pasaribu, Ibu Delpi Sihombing, selaku keluarga penulis yang selalu memberi dukungan dalam menyusun laporan ini serta doa yang selalu dipanjatkan.
- 3. Dr. Ir. Hijriah, S.T., M.T. selaku Dosen Pembimbing 1 dan Bapak Fachreza Akbar, S.T., M.T. selaku Dosen Pembimbing 2 yang membantu dalam proses pembelajaran serta mengarahkan dalam proses pengerjaan proposal tugas akhir ini.
- 4. Bapak Ir. Arief Nugraha Pontoh, S.T., M.Eng selaku koordinator Program Studi Teknik Sipil Jurusan Teknik Sipil dan Perencanaan ITK. Bapak Dr. Eng. Ardiansyah Fauzi, S.T.,M.,M.Eng, Bapak Ir. Basyaruddin, S.T.,M.T.,M.Sc, Bapak Fachreza Akbar, S.T., M.T., Bapak Ir. Arief Nugraha Pontoh, S.T., M.Eng, Bapak Muhammad Fajrin Wahab, S.T., M.T., Bapak Riyan Benny Sukmara, ST., MT., Bapak Raftonado Situmorang, S.T., M.T., Bapak Ir. Andika Ade Indra Saputra, S.T., M.T.,

Bapak Muhammad Hadid, ST., MT., Ibu Andina Prima Putri, ST., M.Eng., Ibu Ir. Dyah Wahyu Apriani, S.T., M.Eng., Ibu Ir. Oryza Lhara Sari, S.T., M.T., dan Ibu Ir. Rossana Margaret Kadar Yanti, S.T., M.T., Bapak Priyo Wibisono S.T., M.T, Ibu Dwi Aneka Kartini, S.T., M.T., Bapak Muhammad Huzair T., S.T., M.T. Selaku dosen Program Studi Teknik Sipil Institut Teknologi Kalimantan.

- 5. Aquilera Simanjorang, Narumi Patricia Nababan, Tasya Uli Panggabean, Shindi Claudia Panjaitan dan Liniati Monica Sitinjak selaku teman sekontrakan yang selalu menghibur dan menyemangati selama proses pengerjaan proposal ini.
- 6. Teman-Teman Sipil angkatan 2021 atas kerjasamanya dalam meluangkan waktu dan tenaga untuk memberi masukan dan arahan dalam pembuatan proposal ini.
- 7. Serta semua pihak yang terlibat dalam penyusunan laporan tugas akhir ini. Saya menyadari bahwa penyusunan laporan tugas akhir ini tidak dapat terlaksana tanpa bimbingan, bantuan, dan saran dari berbagai pihak. Saya menyadari laporan ini masih banyak kekurangan dan jauh dari kata sempurna. Oleh karena itu, kritik dan saran yang membangun dan dapat memperbaiki laporan ini akan saya terima demi kesempurnaan laporan ini. Semoga tugas akhir ini dapat

bermanfaat bagi kita semua. Atas perhatiannya kami ucapkan terima kasih.

PERENCANAAN *LIFT* BARANG PADA GEDUNG A KAMPUS INTITUT TEKNOLOGI KALIMANTAN

Nama Mahasiswa : Pianti Putriana Panjaitan

NIM : 07211068

Dosen Pembimbing Utama : Dr. Ir. Hijriah, S.T., M.T. Pembimbing Pendamping : Fachreza Akbar, S.T., M.T.

ABSTRAK

Gedung A Institut Teknologi Kalimantan memiliki berbagai fungsi ruang di setiap lantainya, yang menyebabkan perlunya mobilisasi barang antar lantai secara intensif. Saat ini, proses pengangkutan barang masih dilakukan secara manual melalui tangga, yang berisiko menyebabkan cedera dan tidak sesuai dengan prinsip Keselamatan dan Kesehatan Kerja (K3). Berdasarkan Peraturan Menteri Ketenagakerjaan No. 6 Tahun 2017 dan SNI 03-1739-2002, diperlukan fasilitas transportasi vertikal seperti lift barang untuk memenuhi aspek keselamatan dan aksesibilitas. Penelitian ini bertujuan merancang lift barang yang aman dan efisien untuk Gedung A dengan struktur utama menggunakan baja. Hasil perencanaan menunjukkan bahwa lift barang memiliki kapasitas 500 kg, dimensi kereta 1,83 x 1,3 x 2,1 meter, sling baja diameter 8 mm, dan motor penggerak berkekuatan 17 HP. Struktur utama dirancang dengan kolom H-beam 200x200x8x12 mm, balok IWF 150x100x6x9 mm serta pengaku lateral (bresing) IWF 150x100x6x9 mm, sedangkan pondasi menggunakan bor pile berdiameter 30 cm sedalam 8,6 meter. Total estimasi biaya pembangunan lift sebesar Rp 435.615.821,74. Analisis risiko menunjukkan bahwa potensi bahaya tertinggi berasal dari kondisi overload, namun dapat dikendalikan melalui pemasangan sensor dan alarm. Dengan perencanaan ini, diharapkan proses pengangkutan barang di Gedung A menjadi lebih aman, efisien, dan sesuai standar teknis.

Kata Kunci:

Lift barang, Baja, biaya, bahaya, risiko lift barang.

PLANNING OF A GOODS LIFT IN BUILDING A OF THE KALIMANTAN INSTITUTE OF TECHNOLOGY CAMPUS

By : Pianti Putriana Panjaitan

Studennt Identity Number : 07211068

Supervisor : Dr. Ir. Hijriah, S.T., M.T. Co - Supervisor : Fachreza Akbar, S.T., M.T

ABSTRAK

Building A of Kalimantan Institute of Technology has various function spaces on each floor, which causes the need for intensive mobilization of goods between floors. Currently, the process of transporting goods is still done manually via stairs, which risks causing injury and is not in accordance with the principles of Occupational Safety and Health (K3). Based on the Minister of Manpower Regulation No. 6 of 2017 and SNI 03-1739-2002, vertical transportation facilities such as freight elevators are required to meet safety and accessibility aspects. This research aims to design a safe and efficient freight elevator for Building A with the main structure using steel. The planning results show that the freight elevator has a capacity of 500 kg, carriage dimensions of 1.83 x 1.3 x 2.1 meters, 8 mm diameter steel slings, and a 17 HP drive motor. The main structure is designed with 200x200x8x12 mm H-beam columns and 150x100x6x9 mm IWF beams and 150x100x6x9 mm IWF lateral stiffeners (braces), while the foundation uses 30 cm diameter drill piles 8.6 meters deep. The total estimated cost of the elevator construction is IDR 435,615,821.74. Risk analysis shows that the highest potential hazard comes from overload conditions, but can be controlled through the installation of sensors and alarms. With this planning, it is expected that the process of transporting goods in Building A will be safer, more efficient, and in accordance with technical standards.

Translated with DeepL.com (free version)

Keyword:

Freight elevator, Steel, cost, danger, risk of freight elevator.

DAFTAR ISI

PERNT	TATAAN KEASLIAN TA	ii
PERSE	ETUJUAN PUBLIKASI	iv
LEMBA	AR PENGESAHAN	vi
KATA	PENGANTAR	iii
ABSTR	RAK	v
DAFTA	AR ISI	ix
DAFTA	AR GAMBAR	XV
DAFTA	AR TABEL	xvii
DAFTA	AR NOTASI	xix
PENDA	AHULUAN	1
1.1	Latar belakang	1
1.2	Rumusan masalah	4
1.3	Tujuan	4
1.4	Manfaat	4
1.5	Batasan Masalah	5
1.6	Kerangka Pemikiran	6
BAB II	I	7
TINJA	UAN PUSTAKA	7
2.1	Perencanaan	7
2.2	Lift barang	7
2.3	Jenis-jenis lift barang	8
2.4	Komponen Lift Barang	14
2.5	Letak lift pada bangunan	17
2.6	Perencanaan lift	19
	2.6.1 Kapasitas	19
	2.6.2 Sangkar/Kereta	20

	2.6.3	Tali	20
	2.6.4	Perencanaan motor listrik	22
2.7	Pem	bebanan	23
	2.7.1	Beban mati	23
	2.7.2	Beban hidup	24
	2.7.3	Kombinasi pembebanan	25
	2.7.4	Pembebanan pada <i>lift</i>	25
	2.7.5	Beban angin	. 27
	2.7.6	Beban gempa	. 27
2.8	Stru	ktur baja	32
	2.8.1	Baja Konstruksi	32
	2.8.2	Sifat-sifat mekanis baja	35
	2.8.3	Keuntungan dan kerugian penggunaan material baja	35
2.9	Kon	sep perencanaan struktur baja	36
	2.9.1	Dasar desain struktur baja	36
	2.9.2	Batang tarik	37
	2.9.3	Batang tekan	44
	2.9.4	Sambungan dan jenis-jenis alat sambungan	51
	2.9.5	Jenis-jenis sambungan	51
	2.9.6	Ukuran dan lubang baut	53
	2.9.7	Jarak baut	. 55
	2.9.8	Tipe sambungan dan kegagalan sambungan	56
	2.9.9	Kekuatan baut	58
	2.9.10	Jenis-jenis las dan sambungan las	59
	2.9.11	Base plate	60
	2.9.12	Pengangkuran	66

	2.9.13	Stiffener (pengaku)	. 70
2.10) Ponda	si	. 71
	2.10.1	Pengertian pondasi	. 71
	2.10.2	Jenis-jenis pondasi	. 71
2.11	l Renca	na Anggaran Biaya	. 72
	2.11.1	Analisa Harga Satuan Pekerjaan	. 74
	2.11.2	Tahapan penyusunan rencana anggaran biaya	. 76
2.12	2 Bahay	a dan Pengendalian Resiko Kecelakaan Kerja	. 77
	2.12.1	Bahaya	. 77
	2.11.2	Sumber Bahaya	. 77
	2.12.3Re	siko Kecelakaan Kerja	. 78
2.13	B Peneli	tian Terdahulu	. 79
BAB l	III		. 83
METO	DDE PENI	ELITIAN	. 83
3.1	Metod	e penelitian	. 83
3.2	Diagra	nm alir	. 83
3.3	Prosec	lur penelitian	. 86
	3.3.1	Studi literatur	. 86
	3.3.2	Pengumpulan data	. 86
	3.3.3	Penentuan lokasi	. 87
	3.3.4	Perencanaan spesifikasi <i>lift</i> barang	. 97
	3.3.5	Perencanaan desain awal dan permodelan struktur	. 97
	3.3.6	Analisis Kapasitas	. 98
	3.3.7	Gambar kerja	. 99
	3.3.8	Perencanaan fondasi	. 99
	3.3.9	Analisis biaya	. 99
	3.3.10	Analisis keselamatan	100

BAB I	[V	
HASII	L DAN P	EMBAHASAN102
4.1	Spesi	fikasi Lift Barang102
	4.1.1	Kapasitas
	4.1.2	Sangkar/kereta
	4.1.3	Tali kawat baja
	4.1.4	Perencanaan motor listrik
4.2	Peren	canaan Struktur dan Sambungan
	4.2.1	Pembebanan 109
	4.2.2	Permodelan 113
	4.2.3	Perhitungan Teoritis
4.3	Anali	sis bahaya dan pengendalian risiko179
	4.4.1	Identifikasi Bahaya (Hazard Identification)
	4.4.2	Penilaian Risiko (<i>Risk Assessment</i>)
	4.4.3	Implementasi mitigasi risiko dalam desain
4.4	Gamb	par kerja
4.5	Renca	ana anggaran biaya (RAB)195
	4.4.1	Gambar 195
	4.4.2	Volume pekerjaan
	4.4.2	AHSP dan HSP
	4.4.2	Rencana Anggaran Biaya
BAB '	V	
PENU	TUP	
5.1	Kesin	npulan
5.2	Saran	
LAMI	PIRAN	
WAW	ANCAR	A
3.1	Form	Hasil Wawancara

2.1 B	Bukti Doukumentasi Wawancara	211
LAMPI	RAN II	212
RENCA	ANA ANGGARAN BIAYA	212
2.1	Volume pekerjaan	213
2.2	Harga Upah Pekerja, Haraga Alat, dan Harga Bahan	219
2.3	Analisa Harga Satuan Pekerjaan (AHSP)	224
2.4	Harga Satuan Pekerjaan (HSP)	239
2.5	Rekapitulasi Rencana Anggaran Biaya (RAB)	240
LAMPI	RAN III	243
DATA	TANAH	243
5.1 L	okasi pengambilan sampel tanah	244
5.2 D	Oata tanah (Uji sondir)	245
LAMPI	RAN IV	247
KATAI	LOG ATAU BROSUR	247
LAMPI	RAN IV	253
GAMB	AR KERJA	253

DAFTAR GAMBAR

Gambar 1. 1 Proses pengangkutan barang menggunakan tangga	
	2
Gambar 1. 2 Fishbone Diagram	6
Gambar 2. 1 Lift dengan sistem penggerak hidrolis	9
Gambar 2. 2 Lift dengan sistem penggerak motor listrik	. 11
Gambar 2. 3 Komponen lift barang	. 14
Gambar 2. 4 Konstruksi cargo lift barang	. 16
Gambar 2. 5 Susunan/Konfigurasi lift	. 18
Gambar 2. 6 Pengaturan Operasional	. 19
Gambar 2. 7 Box container	
Gambar 2. 8 Macam-macam tali baja	. 21
Gambar 2. 9 Profil Baja IWF	. 33
Gambar 2. 10 Profil kanal UNP	. 34
Gambar 2. 11 Profil Baja Siku	. 35
Gambar 2. 12 Sambungan baut pada struktur baja	. 39
Gambar 2. 13 Lubang baut segaris	. 40
Gambar 2. 14 Lubang baut tidak segaris	. 40
Gambar 2. 15 Jarak titik berat antara penampang ke sambungan	. 41
Gambar 2. 16 Keruntuhan geser blok pada struktur baja	. 43
Gambar 2. 17 Kombnasi keruntuhan geser dan tarik pada geser blok	. 43
Gambar 2. 18 Struktur kolom menggunakan material baja	. 44
Gambar 2. 19 Kolom euler	
Gambar 2. 20 Nomogram penentuan nilai K pada komponen struktur bergoya	ng
	. 46
Gambar 2. 21 Nomogram penentuan nilai K pada komponen struktur tak	
bergoyang	
Gambar 2. 22 Batang tekan yang mengalami tekuk lokal	
Gambar 2. 23 Tiga macam tekuk komponen struktur tekan	
Gambar 2. 24 Sambungan sejajar	50
Gambar 2. 25 Sambungan tegak lurus	. 52
Gambar 2. 25 Sambungan tegak lurus	. 52 . 53
Gambar 2. 25 Sambungan tegak lurus	. 52 . 53 . 53
Gambar 2. 25 Sambungan tegak lurus	. 52 . 53 . 53
Gambar 2. 25 Sambungan tegak lurus	. 52 . 53 . 53
Gambar 2. 25 Sambungan tegak lurus	. 52 . 53 . 53 . 56 . 57
Gambar 2. 25 Sambungan tegak lurus	. 52 . 53 . 53 . 56 . 57
Gambar 2. 25 Sambungan tegak lurus	. 52 . 53 . 53 . 56 . 57 . 57
Gambar 2. 25 Sambungan tegak lurus	. 52 . 53 . 53 . 56 . 57 . 57
Gambar 2. 25 Sambungan tegak lurus	. 52 . 53 . 53 . 56 . 57 . 57 . 60 . 62
Gambar 2. 25 Sambungan tegak lurus	. 52 . 53 . 53 . 56 . 57 . 59 . 60 . 62
Gambar 2. 25 Sambungan tegak lurus Gambar 2. 26 Sambungan kombinasi sejajar tegak-lurus Gambar 2. 27 Baut dengan mutu A325 Gambar 2. 28 Baut dengan mutu A490 Gambar 2. 29 Jarak dan spasi baut Gambar 2. 30 Mekanisme slip baut Gambar 2. 31 Bidang geser pada sambungan baut Gambar 2. 32 Jenis-jenis sambungan las Gambar 2. 33 Jenis-jenis las Gambar 2. 34 Desain base plate dengan beban aksial tekan Gambar 2. 35 Desain pelat dasar dengan momen kecil Gambar 2. 36 Desain pelat dasar dengan momen besar	. 52 . 53 . 53 . 56 . 57 . 57 . 60 . 62 . 63
Gambar 2. 25 Sambungan tegak lurus	. 52 . 53 . 53 . 56 . 57 . 57 . 60 . 62 . 63
Gambar 2. 25 Sambungan tegak lurus Gambar 2. 26 Sambungan kombinasi sejajar tegak-lurus Gambar 2. 27 Baut dengan mutu A325 Gambar 2. 28 Baut dengan mutu A490 Gambar 2. 29 Jarak dan spasi baut Gambar 2. 30 Mekanisme slip baut Gambar 2. 31 Bidang geser pada sambungan baut Gambar 2. 32 Jenis-jenis sambungan las Gambar 2. 33 Jenis-jenis las Gambar 2. 34 Desain base plate dengan beban aksial tekan Gambar 2. 35 Desain pelat dasar dengan momen kecil Gambar 2. 36 Desain pelat dasar dengan momen besar	. 52 . 53 . 53 . 56 . 57 . 57 . 62 . 63 . 65 . 68

Gambar 2. 40 Skema Harga Satuan Pekerjaan (HSP)	75
Gambar 2. 41 Tahapan penyusunan rencanan anggaran biaya	
Gambar 2. 42 Posisi Penelitian	
Gambar 3. 1 Diagram ali	
Gambar 3. 2 Posisi A	
Gambar 3. 3 Posisi B	89
Gambar 3. 4 Posisi C	90
Gambar 4. 1 Hasil permodelan lift barang dengan kapasitas lift 200 kg	
Gambar 4. 2	
Gambar 4. 3 Kegagalan jebol beton akibat tarik	
Gambar 4. 4 Kegagalan jebol beton akibat tarik	
Gambar 4. 5 Hasil analisis tulangan pedestal menggunakan software SPCol	
Gambar 4. 6 Denah titik sondir	
Gambar 4. 7 Penentuan nilai qc rata-rata berdasarkan metode Aoko & De	
Alencar	165
Gambar 4. 8 Grafik nilai Hu, Metode Brom's	171
Gambar 4. 9 Hasil analisis tulangan bored pile menggunakan software	
SPColumn	172
Gambar 4. 10 Gambar tampak atas dan samping atas pile cap	176
Gambar 4. 11 Letak pelat besi sebagai penutup celah	
Gambar 4. 12 Letak pelat besi apabila ada perbedaan tinggi/elevasi car lift	
dengan lantaidengan lantai	188
Gambar 4. 13 Penyesuaian tinggi car lift	
Gambar 4. 14 Letak pengunci pintu pada car lift	
Gambar 4. 15 Safety brake system	
Gambar 4. 16 Box Oli	
Gambar 4. 17 Denah kolom lantai 1	

DAFTAR TABEL

Tabel 2. 1 Perbedaan lift dengan sistem penggerak hidrolis dan motor listrik	14
Tabel 2. 2 Besaran faktor bobot imbang	17
Tabel 2. 3 Berat sendiri bahan bangunan dan komponen gedung	23
Tabel 2. 4 Beban hidup terdistribusi merata minimum, <i>LO</i> , dan beban hidup	
terpusat minimum	24
Tabel 2. 5 Kombinasi pembebanan	
Tabel 2. 6 Kategori risiko bangunan dan struktur lain	28
Tabel 2. 7 Faktor keutamaan gempa	29
Tabel 2. 8 Kategori desain seismik berdasarkan parameter respons percepatan	n
periode pendek	
Tabel 2. 9 Kategori desain seismik berdasarkan parameter respons percepatan	n
periode 1 detik	
Tabel 2. 10 Nilai parameter periode pendekatan Ct dan x	
Tabel 2. 11 Sifat mekanis baja struktural secara umum	35
Tabel 2. 12 Faktor panjang efektif atau faktor panjang tekuk (K)	
Tabel 2. 13 Pratarik naut minimu (kN)	
Tabel 2. 14 Kekuatan nominal pengencang dan bagian yang berulir, ksi (Mpa	a). 54
Tabel 2. 15 Dimensi lubang nominal, mm	
Tabel 2. 16 Jarak tepi minimum baut, mm	
Tabel 3. 1 Metode matriks pros cons	
Tabel 3. 2 Penentuan skala pada masing-masing kriteria	
Tabel 3. 3 Penentuan posisi	
Tabel 3. 4 Parameter spesifikasi lift barang	
Tabel 3. 5 Parameter kriteria desain dan permodelan struktur	
Tabel 3. 6 Parameter kontrol kapasitas struktur	
Tabel 3. 7 Parameter perencanaan fondasi	
Tabel 3. 8 Parameter perhitungan biaya	
Tabel 4. 1Penelitian terdahulu	
Tabel 4. 2 Data elemen kabin/kereta lift barang	
Tabel 4. 3 Spesifikasi tali baja	
Tabel 4. 4 Parameter untuk menghitung daya motor	
Tabel 4. 5 Spesifikasi motor listrik	
Tabel 4. 6 Beban mati	
Tabel 4. 7 Beban hidup	
Tabel 4. 8 Analisis beban angin	
Tabel 4. 9 Hasil analisis beban gempa statik ekivalen	
Tabel 4. 10 Beban gempa setiap lantai	
Tabel 4. 11 Komponen struktur lift barang	
Tabel 4. 12 Mutu material	
Tabel 4. 13 Berat struktur secara manual	
Tabel 4. 14 Berat struktur dari SAP2000	
Tabel 4. 15 Selisih berat struktur manual dan SAP2000	
Tabel 4. 16 Hasil analisis periode fundamental	
Tabel 4. 17 Rasio partisipasi massa dari SAP2000	118

Tabel 4. 18	Parameter untuk menghitung geser seismik	119
Tabel 4. 19	Gaya dalam dan hasil analisis balok	127
Tabel 4. 20	Hasil analisis lendutan balok	128
Tabel 4. 21	Gaya dalam aksial dan hasil analisis kolom	133
	Data perhitungan	
Tabel 4. 23	Hasil Analisis Kapasitas Penampang Bresing	137
Tabel 4. 24	Mutu material	141
Tabel 4. 25	Dimensi elemen	141
Tabel 4. 26	Hasil analisis sambungan baut	144
Tabel 4. 27	Hasil analisis pelat penyambung	144
Tabel 4. 28	Hasil analisis tahanan dan sambungan baut	148
	Hasil analisis sambungan las sudut	
Tabel 4.30	Data dimensi kolom dan pedestal	149
Tabel 4.31	Spesifikasi angkur M12	156
Tabel 4. 32	Spesifikasi angkur M12	157
Tabel 4.33	Data perencanaan pedestal	158
Tabel 4.34	Data perencanaan pondasi	164
Tabel 4.35	Data perencanaan bored pile	173
Tabel 4.36	Data perencanaan	176
Tabel 4. 37	Identifikasi pada operasional lift barang	180
Tabel 4.38	Penilaian risiko awal	182
Tabel 4. 39	Penilaian risiko akhir	183
Tabel 4.40	Dampak dan rekomendasi/saran	184
Tabel 4. 41	Simbol, nama dan fungsi tombol lift barang	193
Tabel 4. 42	Pekerjaan profil Hbeam 200 x 200 x 8 x 12	198
Tabel 4. 43	Rekap rencana anggaran biaya (RAB) pekerjaan lift barang	199

DAFTAR NOTASI

0		Vanasitas	[4]
Q		Kapasitas Pahan total yang ditahan tali kayyat hais	[ton]
G_{tot}		Beban total yang ditahan tali kawat baja	[ton]
G_k		Berat kabin kosong	[ton]
G_{kt}	:		[ton]
n	:	Jumlah kawat baja yang dipakai	[Buah]
η	:	Efisiensi pulley	
η_1	:	Koefesien kawat baja saat melewati pulley	г 21
A	:	Luas penampang efektif tiap kawat baja	$[mm^2]$
S		Beban yang ditahan tiap kawat baja	[kN]
σmax	:	Tegangan tarik maksimum	[kN]
K	:	Faktor keamanan untuk kawat baja pada elevator	[Mpa]
E	:	Modulus elastistas kawat baja	[Mpa]
Ε'.	:	Modulus elastitas kawat baja yang telah di koreksi	[Mpa]
Dmin	:	Perbandingan diameter drum dengan kawat baja	г 1
d	:	Diameter tali kawat baja	[mm]
σi		Tegangan ijin	[Mpa]
δ		Diameter serabut kawat pada tali kawat baja	[mm]
V	:	Kecepatan angkat maksimum lift/elevator	[m/det]
P_{m}		Daya amotor	[HP]
n		Putaran motor	[rpm]
Ψ		Koefisien kejut yang nilainya tidak boleh diambil kurang	
		dari 1,15	
K_1	:	Koefisien yang bergantung pada kekakuan struktur keran	
-		induk	
K_2	•	Koefisien yang bergantung pada sifat mesin angkat dari	
P		keranangkatnya	[kN]
	:	J C J 1	
P	:	1 8	$[kg/m^2]$
I_e	:	Faktor keutamaan gempa	[m/det]
S_{DS}	:	Kategori desain seismik berdasarkan parameter respons	
DS		percepatan periode pendek	
S_{D1}	:	Kategori desain seismik berdasarkan parameter respons	
		percepatan periode 1 detik	
C_t	:	Nilai parameter periode pendekatan	
T_a	:	Nilai periode struktur	
h_n	:	Ketinggian struktur diatas dasar hingga tingkat tertinggi	
		struktur	
N	:	Jumlah tingkat struktur	
C_s	:	Koefisien respon seismik	[t x t]
V	:	Gaya geser dasar seismik	[kN]
W	:	Berat seismik efektif total	[kN]
P_{u}	:	Gaya tarikk aksial terfaktor	[kN]
A_n	:	Luas penampang neto	$[m^2]$
A_{g}	:	Luas penampang bruto	$[m^2]$
t	:	Tebal penampang	[m]
L	:	Panjang las	[m]
F_y	:	Tegangan leleh minimum yang diisayaratkan	[Mpa]

F_{u}	:	Kekuatan leleh minimum yang diisayaratkan	[Mpa]
F'c	:	Mutu beton	[Mpa]
Ø	:	Faktor ketahanan	$[kg/m^2]$
Kd	:	Faktor Arah Angin	
Kzt	:	Faktor Topografi	
Ke	:	Faktor elevasi	
Kz	:	Koefisien Eksposur Tekanan Kecepatan	
Qz	:	Tekanan kecepatan	[m/det]
Gf	:	Faktor Pengaruh Hembusan Angin	
Gcpi	:	Faktor Ketertutupan	
Сp	:	Koefisien Tekanan Eksternal	
q_h	:	Beban hujan	$[kg/m^2]$
R	:	Koefisien Modifikasi respons	-

BABI

PENDAHULUAN

1.1 Latar belakang

Institut Teknologi Kalimantan merupakan sebuah kampus yang berdiri didaerah kalimantan timur tepatnya di balikpapan. Kampus ini memiliki beberapa gedung, dan semua gedung kampus tersebut merupakan gedung bertingkat. Diantara gedung-gedung tersebut, terdapat gedung A yang memiliki fungsi ruang berbeda tiap lantainya. Adapun ruangan pada *basement* terdapat koperasi ITK dan gudang besar. Pada lantai 1 terdapat ruang unit layanan terpadu (ULT), ruang dosen, klinik, penitipan anak, toilet, janitor dan perpustakaan. Pada lantai 2 terdapat Pengadaan, sarana dan prasarana, hubungan masyarakat, satuan pengawasan internal, ruang arsip, toilet, janitor, ruang rektorat, ruang wakil rekor, BNI, ruang rapat, UPT bahasa, kepegawaian, perencanaan dan penjamin mutu. Pada lantai 3 terdapat ruang auditorium, ruang kelas, gym, UKM Robotik, janitor, toilet, dan ruang rapat atau ruang sidang.

Peneliti melakukan wawancara pada pengelola gedung untuk mengetahui kendala atau masalah yang ada pada saat proses pengangkutan barang antar lantai, hasil wawancara dapat dilihat pada lampiran. Dimana setiap ruangan pada gedung A memiliki kebutuhan barang yang berbeda-beda. Jika barang yang dibutuhkan ruangan berada pada lantai 2 dan 3, maka barang tersebut akan diangkut oleh manusia menggunakan tangga. Adapun barang yang biasanya diangkut berupa *smartscreen*, dokumen (dalam kontainer), galon, kursi, meja, peralatann gym, barang-barang untuk keperluan kegiatan di auditorium seperti kotakan makanan dan lain sebagainya. Banyaknya barang yang diangkut dengan jumlah yang banyak dan massa yang berat maka pengguna gedung mengalami kesulitan dalam proses pengangkutannya, dimana hal ini juga bersangkutan dengan resiko kecelakaan kerja bagi pengangkut barang dan keamanan barang yang diangkut. Gedung A menggunakan sarana transportasi vertikal berupa tangga, yang sampai saat ini tangga tersebut merupakan akses utama dalam gedung tersebut. Implementasi tangga sebagai alat transportasi vertikal pada gedung A ini kurang memberikan

manfaat yang baik dalam proses pengangkutan barang dimana proses pengangkutan barang tersebut membutuhkan tenaga yang banyak dan waktu yang lama serta resiko kecelakaan kerja bagi pengangkut barang dan keamanan barang yang kurang. Karena apabila barang yang diangkat dalam jumlah yang banyak, barang akan diangkut bolak-balik antar lantai, dimana pada hal ini dapat meningkatkan risiko kecelakaan yang tinggi bagi pengguna gedung yang mengangkut barang. Berikut merupakan beberapa dokumentasi aktivitas pengangkutan barang digedung A.

Gambar 1. 1 Proses pengangkutan barang menggunakan tangga (Sumber : Sarpras ITK)

Lift barang adalah alat transportasi vertikal yang digunakan khusus untuk mengangkut barang. Lift barang dirancang khusus untuk mengangkut barang dengan kapasitas, yang sangat relevan dengan kebutuhan gedung dalam memindahkan barang. Penggunaan lift barang dan lift penumpang secara terpisah dapat meningkatkan efisiensi operasional, karena lift barang memiliki desain yang lebih kuat dan kecepatan yang lebih lambat, sehingga mengurangi risiko kerusakan. Pemisahan ini juga mengurangi risiko keselamatan, karena lift barang tidak dirancang untuk penumpang. Lift barang memungkinkan optimalisasi ruang dalam gedung, dengan desain yang lebih sesuai untuk kebutuhan spesifik penggunaannya dan lebih hemat biaya yang memungkinkan alokasi sumber daya yang lebih baik untuk perawatan dan pengoperasian lift.

Pada gedung bertingkat *lift* barang tidak hanya berfungsi untuk memindahkan barang, namun dapat meningkatkan produktivitas dan

kenyamanan operasional dilingkungan akademik. Desain harus mempertimbangkan berbagai faktor agar sesuai dengan kebutuhan gedung, seperti kapasitas angkut, dimensi kereta, sistem kontrol dan memastikan keamanan serta efisiensi dalam pengoperasiannya.

Pada gambar 1.1 proses pengangkutan barang menggunakan tangga, dapat dilihat bahwa pengguna gedung dapat mengalami risiko cedera akibat mengangkut barang berat secara manual. Dalam hal ini, lift barang dirancang untuk mengurangi risiko cedera akibat pengangkatan barang berat secara manual. Peraturan Menteri Ketenagakerjaan No. 6 Tahun 2017 menjelaskan bahwa penggunaan lift untuk pengangkutan barang harus memenuhi syarat keselamatan yang ketat untuk melindungi pengguna dari potensi bahaya. Lift barang memberi kontribusi dalam menciptakan lingkungan kerja yang lebih aman dan nyaman. Dengan mengurangi kebutuhan mengangkat barang secara manual, risiko kecelakaan kerja dapat diminimalkan. Hal ini juga sejalan dengan prinsip SMK3 yang menekankan pentingnya menciptakan lingkungan kerja yang aman dan sehat. Dengan adanya lift barang, pengguna gedung tidak perlu membawa tumpukan barang yang berat melalui tangga, yang dapat menyebabkan kelelahan atau cedera. Untuk mendukung akses dalam gedung Peraturan Pemerintah Nomor 36 Tahun 2005 tentang Peraturan Pelaksanaan UU No. 28 Tahun 2002 Pasal 3 menyatakan bahwa Setiap bangunan gedung harus memenuhi persyaratan administrasi dan teknis. Persyaratan teknis meliputi persyaratan kesehatan, kenyamanan dan kemudahan, yang meliputi fasilitas transportasi vertikal seperti di gedung bertingkat. Dan SNI 03-1739-2002 tentang Tata Cara Perencanaan Aksesibilitas pada Bangunan dan Lingkungan menyatakan perencana harus mengatur ketersediaan sarana transportasi vertikal, seperti lift, untuk memastikan aksesibilitas bagi semua orang, termasuk penyandang disabilitas, terutama di gedung bertingkat lebih dari 3 lantai.

Dengan masalah dan peraturan yang telah dijelaskan sebelumnya, peneliti berencana mendesain *lift* barang sebagai masukan untuk kampus, agar mempermudah pengguna gedung dalam proses pengangkutan barang antar lantai.

1.2 Rumusan masalah

Dalam merencanakan barang pada gedung A kampus Institut Teknologi Kalimantan, terdapat beberapa pertanyaan yang timbul, yaitu:

- 1. Berdasarkan kebutuhan operasionalnya, apa saja spesifikasi teknis *lift* barang yang dibutuhkan?
- 2. Bagaimana detail perencanaan pada aspek struktural (elemen baja, interkoneksi, dan sistem pengangkuran), serta gambar kerja.
- 3. Biaya apa saja yang dibutuhkan pada pembangunan *lift* barang tersebut ?
- 4. Bagaimana analisis keselamatan dalam operasional *lift* barang tersebut dan bagaimana mitigasi serta implementasi dalam desain?

1.3 Tujuan

Berdasarkan latar belakang dan permasalahan dalam tugas akhir ini, tujuan yang ingin dicapai dalam penulisan tugas akhir ini adalah :

- 1. Mendesain *lift* barang di gedung A kampus Institut Teknologi Kalimantan
- 2. Merencanakan struktur rangka, detail sambungan/interkoneksi, dan gambar kerja *lift* barang pada gedung A kampus Institut Teknologi Kalimantan
- Menganalisis jenis material, item pekerjaan dan biaya yang diperlukan dalam pembangunan lift barang di gedung A kampus Institut Teknologi Kalimantan
- Mengetahui aspek keselamatan dalam operasional *lift* barang, mitigasi dan implementasi dalam desain di gedung A kampus Institut Teknologi Kalimantan

1.4 Manfaat

Pada penelitian tugas akhir ini, peneliti mengharapkan pembaca mendapatkan manfaat, baik secara teorotis maupun praktis. Adapun manfaat dalam penelitian ini ada 3 yaitu :

- Dapat menambah pengetahuan tentang perencanaan *lift* barang dan dapat dijadikan dasar dalam perencanaan barang di gedung A kampus Institut Teknologi Kalimantan
- 2. Dapat dijadikan bahan referensi dalam perhitungan biaya dalam pemasangan *lift* barang di gedung A kampus Institut Teknologi Kalimantan
- 3. Dapat menjadi dasar analisis aspek keselamatan dalam isntalasi pemasangan *lift* barang di gedung A kampus Institut Teknologi Kalimantan

1.5 Batasan Masalah

Adapun batasan masalah dalam penelitian ini yaitu sebagai berikut :

- 1. *Lift* yang direncanakan adalah *lift* barang yaitu khusus untuk mengangkut barang
- 2. Spesifikasi teknis *lift* barang yang direncanakan meliputi kapasitas, kereta/sangkar, motor listrik, jenis tali, dan bobot imbang (tidak memperhitungkan pulley, roda, pegas pada buffer kabin)
- 3. Perencanaan *lift* barang di Institut Teknologi Kalimantan hanya dilakukan pada gedung A saja
- 4. Desain struktur rangka yang dilakukan hanya berfokus pada kolom, balok dan detail sambungan. Penelitian ini juga melakukan analisis biaya dan aspek keselamatannya nya (tidak merencanakan elektrikal).
- 5. Analisis pondasi dilakukan tergantung lokasi atau posisi lift (apabila lift berada dalam gedung maka perlu dilakukan perhitungan kontrol kapasitas daya dukung pondasi, namun apabila lift berada pada luar bangunan maka perlu dilakukan perencanaan pondasi baru atau tidak menggunakan pondasi melainkan menggunakan pelat sebagai tumpuan dari struktur lift tersebut)
- 6. Perencanaan kriteria desain mengacu pada ASCE-7-10-Minimum-design-loads-for-buildings-and-other-structures dan ASME 17.1-2016_Safety Code Elevators and Escalators, karena di Indonesia sendiri belum ada peraturan atau standart yang menjelaskan secara rinci dan jelas tentang perencanaan lift barang.
- 7. Data tanah yang digunakan adalah data hasil uji sondir pada lokasi pembangunan gedung ISSC ITK

1.6 Kerangka Pemikiran

Berikut adalah kerangka penelitian yang memperlihatkan proses penelitian dalam menentukan topik penelitian tugas akhir ini.

Gambar 1. 2 Fishbone Diagram

BAB II

TINJAUAN PUSTAKA

Bab berikut ini menjelasakan tinjauan literatur tentang perencanaan barang, pengertiang barang dan penelitian sebelumnya mengenai barang. Pada tulisan berikut terdapat penelitian terdahulu sebagai acuan penulis dlam merencanakan barang pada tugas akhir ini.

2.1 Perencanaan

Menurut David (2011), perencanaan adalah proses di mana seseorang akan menyelesaikan suatu tugas dengan cara yang berbeda dengan cara yang paling efektif untuk mencapai tujuan yang diinginkan dan bersiap untuk mengatasi kesulitan yang tidak terduga dengan sumber daya.

Menurut Kauffman (2021), perencanaan adalah proses menentukan tujuan dan sasaran yang ingin dicapai dan menentukan jalur dan sumber daya yang diperlukan untuk mencapai tujuan secara efisien dan efektif.

Perencanaan adalah suatu proses yang memungkinkan untuk menentukan masa depan yang tepat, melalui serangkaian pilihan, dengan mempertimbangkan sumber daya yang tersedia (UU RI Nomor 25 Tahun 2004 Tentang Siatem Perencanaan Pembangunan Nasional, Pasal 1 ayat 1).

Berdasarkan berbagai pendapat di atas, perencanaan dapat didefinisikan sebagai proses yang sistematis untuk menentukan tujuan atau sasaran yang ingin dicapai, memilih cara terbaik untuk mencapainya, dan mengalokasikan sumber daya secara efektif dan efisien. Perencanaan juga mencakup kesiapan menghadapi kesulitan yang tidak terduga dan memungkinkan pengambilan keputusan berdasarkan pilihan yang mempertimbangkan sumber daya yang tersedia dan kondisi masa depan.

2.2 Lift barang

Elevator atau adalah bilik atau ruang yang digunakan untuk mengangkut orang atau barang dari suatu lantai ke lantai lainnya secara vertikal dengan

menggunakan seperangkat alat mekanik (Adriansyah dan Hidyatama, 2013). biasanya digunakan di gedung-gedung bertingkat tinggi, gedung yang tidak bertingkat tinggi biasnaya menggunakan tangga sebagai alat transportasi vertikalnya. Layanan transportasi vertikal ini sangat penting dalam menjaga kelancaran aktivitas dalam suatu gedung.

Lift barang adalah alat transportasi vertikal yang dikhususkan untuk memindahkan barang atau beban berat antar lantai suatu bangunan. Berbeda dengan penumpang, barang umumnya memiliki spesifikasi yang lebih ketat dalam hal kapasitas beban ketahanan struktural. ini biasanya digunakan di pabrik, atau bangunan komersial untuk mendukung operasional logistik.

Sistem sambungan pada konstruksi barang biasanya menggunakan las agar komponen menyatu dengan kokoh. Sambungan menggunakan las juga digunakan agar saat digunakan tidak goyang atau bergetar. Untuk sambungan menggunakan baut mur digunakan pada sambungan :

- 1. Balok *hoist* dengan tiang kolom
- 2. Unit roda dengan rangka kargo
- 3. *Bracing* kolom (Jika ada)

2.3 Jenis-jenis *lift* barang

Pada artikel arsitek dan konstruksi baja menjelaskan bahwa ada 4 jenis *lift* barang berdasarkan jenis bangunannya yaitu :

1. *Lift* barang di tempat tinggal

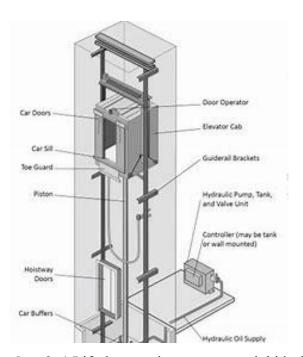
Penggunaan *lift* sebenarnya tidak diperuntukkan untuk rumah tinggal namun barang ini dibutuhkan untuk mengangkut *furniture* yang banyak dan berat. Dalam menentukan kapasitas barang pada rumah tinggal, harus mengetahui elemen yang dipindahkan yang paling berat dan ditentukan daya angkut nya. Penentuan tata letak harus direncanakan saat perancangan bangunan rumah.

2. *Lift* barang di gudang

Gudang pada bangunan pabrik dan sebagainya yang memerlukan perpindahan barang biasanya menggunakan sebagai alat transportasi barang. Barang yang diangkut digudang biasanya berupa paket dll.

3. *Lift* barang di toko

Latar belakang pemasangan *lift* pada bangunan toko disebabkan oleh ruangan yang terbatas dalam proses angkut barang jika toko tersebut lebih dari 2 lantai. Dimana lantai dasar bisanya digunakan untuk aktivitas jualbeli dan lantai atas digunakan untuk *stock* barang.


4. *Lift* barang di proyek

Lift barang dilapangan/proyek jauh berbeda dengan - barang sebelumnya. Dari segi kegunaan barang pada proyek digunakan untuk mengangkut material dan bahan bangunan, bahkan pekerja proyek. Posisi *lift* barang di proyek dibuat ditempat terbuka untuk mempermudah memasukkan material pada.

Jenis-jenis *lift* barang berdasarkan penggerak digolongkan menjadi 2 yaitu:

1. *Lift* dengan sistem penggerak hidrolis (*hydrolic elevator*)

Lift dengan sistem penggerak hidrolik, dimana bergerak menggunakan piston yang dihubungkan kekereta. Kereta akan bergerak naik ketika oli dipompa kedalam silinder dari tangki oli sehingga mendorong piston naik, sebaliknya ketika oli kembali ketangki maka kereta akan bergerak turun.

Gambar 2. 1 Lift dengan sistem penggerak hidrolis

(Sumber: http://id.aoyama-elevator.jp/)

Keuntungan menggunakan sistem penggerak dengan hidrolik:

- Kamar mesin lift tidak ditempatkan dilantai atas (tidak diatas hoisway lift) dan dapat ditempatkan sesuain dengan keinginan asal jaraknya tidak boleh melebihi dari piston lift
- b. Tidak memerlukan *overhead* yang tinggi sehingga cocok untuk bangunan yang dekat dengan *airport*, bangunan dengan atap genteng tanpa tonjolan keatas serta lift-lift bertonase besar (lebih dari 5000kg).
- c. Tidak diperlukan tumpuan yang cukup kuat diatas hoistway lift.

Kekurangan menggunakan sistem penggerak dengan hidrolik

a. Biaya awal yang tinggi

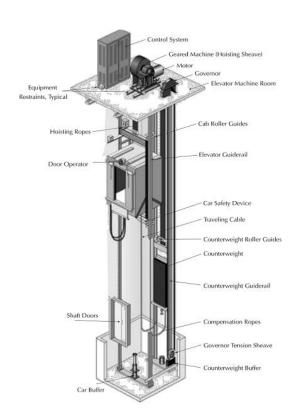
Salah satu kekurangan sistem hidrolik adalah biaya awal yang tinggi. Komponen-komponen hidrolik seperti pompa, katup, dan silinder/piston cenderung mahal, terutama jika kualitas tinggi diperlukan untuk mendukung operasi jangka panjang. Selain itu, biaya instalasi dan penyetelan sistem juga membutuhkan investasi yang cukup besar.

b. Perawatan yang intensif

Kekurangan lainnya dari sistem hidrolik adalah memerlukan perawatan yang cukup intensif dibandingkan sistem lain. Selain itu, penggantian oli atau fluida secara rutin juga diperlukan untuk menjaga performa optimal.

c. Adanya risiko pencemaran lingkungan

Sistem hidrolik menggunakan fluida dalam pengoperasiannya. Jika terjadi kebocoran, maka fluida yang digunakan dapat mencemari lingkungan. Namun, hal ini dapat dicegah dengan melakukan perawatan secara rutin. Selain itu, pencemaran lingkungan juga dapat dihindari dengan manajemen pengolahan limbah yang baik.


d. Temperatur dapat berubah-ubah

Perubahan suhu pada sistem hidrolik dapat mengakibatkan perubahan pada tingkat viskositas dan performa fluida hidrolik. Hal ini berpotensi berdampak pada efisiensi dan keandalan sistem. Namun, kekurangan ini sebenarnya bisa diatasi dengan menggunakan oil cooler yang dapat menjaga suhu fluida pada sistem hidrolik.

e. Kebisingan cukup tinggi

Kekurangan lainnya dari sistem ini adalah tingkat kebisingannya yang cukup tinggi, terutama ketika beroperasi pada tekanan tinggi. Suara mesin ini dapat menjadi gangguan bagi operator. Namun, saat ini terdapat banyak komponen hidrolik yang dirancang agar memiliki tingkat kebisingan yang rendah. Selain itu, suara kebisingan sistem ini dapat juga diatasi dengan menerapkan langkah-langkah mengurangi kebisingan.

2. Lift dengan sistem penggerak dengan motor listrik (traction type elevator)
Penggerak elektrik adalah motor listrik yang digunakan sebagai
penggeraknya dengan mengubah energi listrik menjadi energi mekanik,
dimana konstruksinya terdiri dari motor, slip ring, laher stator dan pengganti
motor. Pada sistem penggerak motor listrik ini membutuhkan beban
penyeimbang (counter weight) yang dihubungkan pada kereta
menggunakan tali baja.

Gambar 2. 2 Lift dengan sistem penggerak motor listrik

(Sumber: http://id.aoyama-elevator.jp/)

Keuntungan menggunakan sistem penggerak dengan motor listrik (*traction type elevator*):

a. Efisiensi energi

Efisiensi energi merupakan pertimbangan utama bagi pemilik bangunan, karena membantu mengurangi biaya operasional dari waktu ke waktu. Di gedung bertingkat tinggi, tempat penggunaan lift sering terjadi, penghematan biaya energi bisa sangat besar. Selain itu, peralihan ke sistem tanpa ruang mesin (MRL), yang mengintegrasikan mesin traksi di dalam poros, mengurangi kebutuhan akan ruang tambahan dan semakin meningkatkan penghematan energi.

b. Perjalanan halus dan nyaman

Mesin traksi lift, khususnya sistem tanpa roda gigi, menawarkan pengendaraan yang lebih mulus dan nyaman dibandingkan dengan sistem hidrolik atau traksi yang lebih lama. Pengoperasian yang lebih senyap, meningkatkan pengalaman penumpang secara keseluruhan. Hal ini khususnya penting di gedung-gedung tinggi, tempat lift dapat melaju dengan kecepatan tinggi dalam jarak yang jauh. Dengan menghilangkan kebutuhan akan komponen mekanis yang menghasilkan kebisingan atau getaran yang berlebihan, sistem tanpa roda gigi memastikan pengendaraan yang senyap dan menyenangkan. Hal ini khususnya menguntungkan di gedung-gedung hunian atau ruang kantor tempat pengurangan kebisingan menjadi prioritas.

c. Mengurangi biaya perawatan

Mesin traksi elevator, khususnya sistem tanpa roda gigi, memerlukan lebih sedikit perawatan karena lebih sedikit komponen yang bergerak. Sistem roda gigi, meskipun efektif, sering kali memerlukan perawatan yang lebih sering karena keausan pada roda gigi. Sebaliknya, sistem tanpa roda gigi memiliki lebih sedikit komponen yang mengalami gesekan, sehingga mengurangi keausan dan memperpanjang interval antara jadwal servis. Hal ini berarti penghematan biaya bagi pemilik gedung, karena lebih sedikit perbaikan dan penggantian yang diperlukan. Lebih jauh lagi, penggunaan sistem tanpa ruang mesin juga mengurangi jumlah

perawatan yang diperlukan, karena sistem ini menghilangkan kebutuhan akan ruang mesin terpisah dan komponen mekanis terkait, sehingga menyederhanakan sistem secara keseluruhan.

d. Performa kecepatan yang tinggi

Sistem lift traksi, terutama yang tanpa roda gigi, mesin traksi lift menawarkan kecepatan yang lebih tinggi dibandingkan dengan lift hidrolik. Hal ini membuatnya ideal untuk gedung-gedung tinggi, di mana transportasi vertikal yang cepat sangat penting. Pada bangunan bertingkat tinggi, kemampuan untuk bergerak cepat antar lantai tanpa mengorbankan keselamatan atau kenyamanan merupakan faktor penting. Mesin traksi tanpa roda gigi mampu mencapai kecepatan tinggi dan memberikan pengoperasian yang lancar, bahkan saat lift menempuh jarak yang jauh.

e. Efisiensi ruang

Dalam sistem tanpa ruang mesin (MRL), mesin traksi elevator diintegrasikan langsung ke poros, sehingga menghilangkan kebutuhan akan ruang mesin khusus. Desain ini khususnya bermanfaat di gedung-gedung dengan ruang terbatas atau dalam proyek-proyek yang memprioritaskan memaksimalkan ruang lantai yang dapat digunakan. Dengan menghilangkan kebutuhan akan ruang mesin, sistem MRL memberikan fleksibilitas lebih dalam desain gedung dan dapat menjadi solusi yang lebih hemat biaya.

Kekurangan menggunakan sistem penggerak dengan motor listrik (*traction type elevator*):

a. Biaya instalasi

Biasanya lebih mahal dibandingkan dengan lift hidrolik, terutama untuk bangunan rendah hingga menengah.

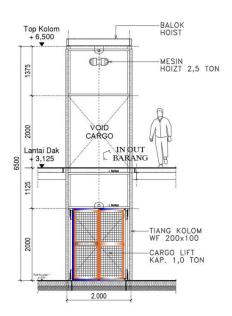
b. Kompleksitas sistem

Memerlukan ruang mesin di bagian atas bangunan (overhead) dan perawatan yang lebih kompleks.

c. Pemeliharaan

Memerlukan pemeliharaan rutin untuk memastikan kabel dan mesin traksi berfungsi dengan baik.

Perbedaan *lift* dengan sistem penggerak hidrolis dan motor listrik yaitu sebagai berikut :


Tabel 2. 1 Perbedaan lift dengan sistem penggerak *Hydrolic* dan *Traction Machine*

No	Perbandingan	Traction Machine	Hydrolic
1	Pelayanan	Tidak terbatas	Terbatas 20 meter
2	Pemakaian	Lebih dari 80 start / stop	Terbatas 80 start/stop
		perjam	perjam
3	Kecepatan	Tidak terbatas (460m/menit)	Terbatas (maks 90
			m/menit)

(Sumber: Prasetyo, 2022)

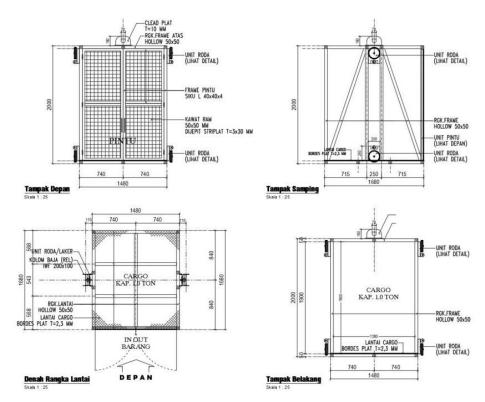
2.4 Komponen Lift Barang

Pada umumnya komponen yang diperlukan dalam pembuatan barang tidak berbeda- beda, namun yang menjadi perbedaan dalam pembuatan *lift* barang adalah desain, ukuran dan cara pemasangannya. Dimana *lift* barang harus disesuaikan menurut jenis dan letaknya. Adapun elemen dari barang adalah sebagai berikut:

Gambar 2. 3 Komponen lift barang

Sumber: arsitekta.com

1. Konstruksi tiang (kolom)


Tiang yang digunakan pada barang biasanya menggunakan baja H-Beam dan WF. Jumlah tiang yang digunakan sebanyak 2 atau 4 buah dan tiang akan digunakan segai rel serta pemasangan roda.

2. Balok hoist

Elemen ini biasanya terbuat dari material yang sejenis dengan kolom. Dimana fungsinya adalah sebgai gantungan mesin hoist, maka dari itu disebut balok hoist. Ketentuan jumlah balok dalam jenis barang berbea-beda apabila tiang dengan type 2 buah kolom maka balok hoistnya 2. Namun jika kolom nya 4 maka balok hoist nya 5 karena pemasangan mesin hoist biasanya berada ditengah. Dimana 4 balok baja untuk menghubungkan ke-4 tiang tersebut dan 1 balok baja yang berada ditengah untk gantungan hoist.

3. Konstruksi Cargo

Kontruksi kargo terbagi menjadi 3 yaitu lantai, dinding dan rangka bagian atas. Material yang digunakan pada ketiga elemen tersebut menggunakan besi siku atau besi stal kotak agar kaku dan kuat. Berikut merupakan gambar konstruksi cargo pada barang.

Gambar 2. 4 Konstruksi cargo lift barang

(Sumber : arsitekta.com)

4. Komponen Roda

Roda adalah alat yang memudahkan kargo bergerak naik turun dalam keadaan kosong maupun berisi. Jumlah roda yang dipakai adalah sebanyak 4 buah dan masing-masing roda dilengkapi 1 buah bearing. Jika type barang menggunakan 4 kolom maka roda terpasang masing-masing adalah 2 roda. Sehingga roda yang dibutuhkan adalah 8 roda. Dalam hal ini jika roda terlalu banyak, bearing tidak perlu dipasang karena fungsi bearing telah digantikan oleh 4 uni roda tambahan.

5. Mesin Hoist

Mesin hoist adalah komponen yang dilengkapi dengan dinamo dan roda gear pemutar tali. Kargo bisa terangkat dan turun pada jalur roda secara perlahan karena digerakkan oleh tenaga listrik. Penentuan kapasitas mesin hoist tidak boleh sama dengan beban yang diangkat karena ada tambahan berat rangka kargo.

6. Railing dan pintu pengaman

Komponen railing tidak terpasang pada konstruksi itu sendiri, namun pada lantai dak diatasnya. Fungsinya adalah sebagai pengaman agar orang atau benda lain jauh dari area . Fungsi lain dari railing ini adalah sebagai akses masuk kargo saat aktivitas bongkar muat. Material railing umumnya terbuat dari besi pipa atau besi hollow dan bisa juga menggunakan material kombinasi besi beton polos dan besi hollow.

7. Mesin traksi

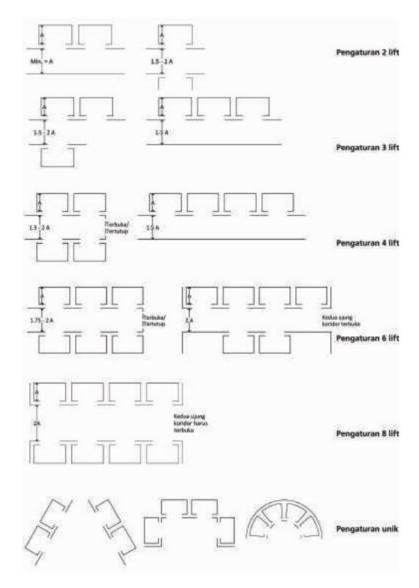
Beban penyeimbang adalah alat yang berfungsi untuk menyeimbangkan beban yang berada disangkar kemudian diteruskan ke mesin traksi untuk meringankan kinerja mesin traksi.

Besar faktor keseimbangan dapat dilihat pada tabel berikut :

Tabel 2. 2 Besaran faktor bobot imbang

Kapasitas elevator	Faktor keseimbangan
> 1200 kg	40% s/d 42,5%
600 kg s/d 1150 kg	45%
1300 kg s/d 1580 kg	50% s/d 55%
	(C 1 D (2022)

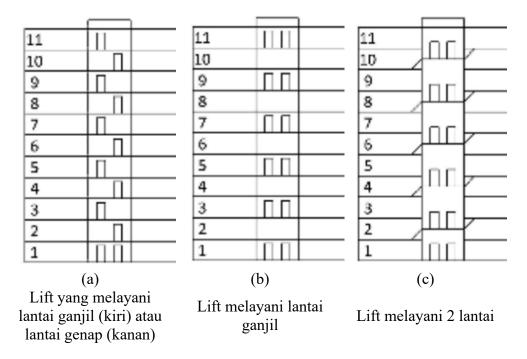
(Sumber: Prasetyo, 2022)


8. Tali baja/sling (*wire rope*)

Tali baja digunakan sebagai alat untuk menggantung kereta/sangkar dan beban penyeibang. Maka dari itu tali baja yang digunakan harus kuat menahan beban kereta dan beban penyeimbang.

2.5 Letak *lift* pada bangunan

1. Susunan/Konfigurasi *lift*


Lahji dkk (2010) mengatakan lift merupakan penghubung antara lantai bawah dan lantai atas, oleh karena itu letak lift harus mudah dapat diakses dari ruangan sekitar, terlihat jelas dan tidak menghalangi pandangan. Lift dapat diletakkan berdampingan atau saling berhadapan dan terdapat maksimal empat pada setiap barisnya, maka jika terdapat lebih dari empat elevator akan ditempatkan saling berhadapan. Dalam hal elevator saling berhadapan, lobi elevator tidak boleh digunakan sebagai ruangan/jalur.

Gambar 2. 5 Susunan/Konfigurasi lift

(Sumber: Lahji dkk, 2010)

2. Pengaturan Operasional

Gambar 2. 6 Pengaturan Operasional

(Sumber : Lahji dkk, 2010)

2.6 Perencanaan lift

2.6.1 Kapasitas

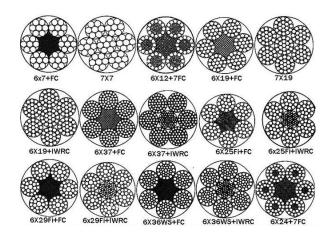
Kapasitas merupakan faktor yang paling penting dalam perencanaan, karena yang direncanakan akan bergantung pada kapasitas rencananya. Berdasarkan SNI 03-6573-2001 Tata cara perancangan sistem transportasi vertikal dalam gedung, kapasitas dinyatakan dalam kilogram (kg) atau jumlah orang yang dapat diangkut oleh lift tersebut. Kapasitas dapat ditentukan berdasarkan fungsi bangunannya, namun kapasitas ini biasanya dipakai untuk penumpang/orang. Dalam perencanaan barang, kapasitas ditentukan berdasarkan beban maksimum (kg) yang diangkut oleh barang. Kapasitas rencana didapatkan berdasarkan bobot terbesar yang diangkut pada gedung tersebut, dengan mengambil sampel bobot barang terbesar adalah kontainer box. Kontainer box dengan bobot persatuan adalah 19,5 kg (box container jumbo ukuran 195 liter). Jumlah kontainer box yang rencana diangkut adalah 6 kontainer dengan masing-masing bobot kontainer adalah 19,5 kg.

Gambar 2. 7 Box container

Adapun persamaan yang digunakan untuk menghitung kapasitas barang adalah:

$$Q = Beban maksimum \times Jumlah item (dalam sekali angkut)$$
 (2.1)
Ket:

Q = Kapasitas (kg)


Namun apabila kapasitas yang didapat menggunakan persamaan tidak mencapai kapasitas minimum yang ada pada standar yang dipakai, maka kapasitas yang dipakai adalah kapasitas yang nilainya paling mendekati dengan nilai kapasitas pada standart yang dipakai.

2.6.2 Sangkar/Kereta

Sangkar digunakan untuk mengangkat beban ke lantai atau tempat yang diinginkan, dimensi sangkar direncanakan berdasarkan dimensi barang terbesar yang akan diangkut dan berdasarkan luasan lantai kondisi eksisting. Dimensi sangkar rencana ditentukan berdasarkan kapasitas rencana.

2.6.3 Tali

Tali pada digunakan untuk menarik sangkar, dimana kedua ujung tali akan disambungkan pada bobot pengimbang dan sangkar. Pada ASME A17.1-2016, tali pengikat yang dirancang harus menggunakan tali yang materialnya berasal dari baja atau logam lainnya. Tali kawat baja dibuat dari kumpulan atau gabungan sejumlah kawat halus (wayar) sampai menjadi satu kesatuan (*strand*) dan kemudian *strand* tersebut digabungkan lagi menjadi satu inti (*core*). Hasil dari rangkaian tali baja tersebut dapat dilihat pada gambar dibawah ini.

Gambar 2. 8 Macam-macam tali baja

(Sumber: Rudenko, 1996)

Dalam merencanakan tali kawat baja pengangkat (G_{tot}) harus memperhitungkan beban total yang akan diangkut :

$$G_{tot} = G_k + Q + G_{kt} \tag{2.2}$$

Beban yang dipikul oleh setiap tali kawat baja:

$$S = \frac{G_{\text{tot}}}{n.\eta.\eta_1} \tag{2.3}$$

Dimana:

 $G_{tot} = Beban total yang ditahan tali kawat baja$

n = Jumlah kawat baja yang dipakai

 η = Efisiensi pulley

 η_1 = Koefesien kawat baja saat melewati pulley

Luas penampang efektif tiap kawat baja (A):

$$A = \frac{S}{\frac{\sigma \max}{K} - \frac{1}{D\min} \times \frac{E'}{1,5\sqrt{i}}}$$
 (2.4)

Dimana:

S = Beban yang ditahan tiap kawat baja

 σ max = Tegangan tarik maksimum

K = Faktor keamanan untuk kawat baja pada elevator

E = Modulus elastistas kawat baja

E' = Modulus elastitas kawat baja yang telah di koreksi

Dmin = Perbandingan diameter drum dengan kawat baja

Diameter utama tali kawat baja (d):

$$d = \sqrt{\frac{4 \times A}{\pi}} \tag{2.5}$$

Dimana:

A = Luas penampang efektif kawat baja

Diameter serabut kawat pada tali kawat baja (δ):

$$\delta = \frac{\mathrm{d}}{1.5\sqrt{\mathrm{i}}} \tag{2.6}$$

Dimana:

d = Pembulatan diameter tali kawat baja

Pemeriksaan tegangan tali kawat baja utama yaitu:

Tegangan tarik tali kawat baja yang diinginkan adalah:

$$\sigma i = \frac{\sigma max}{k} \tag{2.7}$$

Dimana:

σmax = Tegangan tarik maksimum

k = faktor keamanan

Tegangan tarik utama yang sebenarnya terjadi:

$$\sigma t = \frac{S}{A} + \frac{\delta \times E'}{Dmin}$$
 (2.8)

2.6.4 Perencanaan motor listrik

Daya motor diperkirakan berdasarkan persamaan berikut ini:

$$N = \frac{(Q + G_k - G_{CW}) \cdot V}{\eta} \tag{2.9}$$

Dimana:

Q = Kapasitas yang diangkat, kg

 G_k = Beban kabin, kg

 G_{CW} = Beban penyeimbang, kg

 η = Efisiensi total

Asumsi efisiensi total η adalah 85%

2.7 Pembebanan

Beban adalah gaya luar yang bekerja pada suatu elemen sttruktur. Pembebanan didefenisikan sebagai faktor penentu perencanaan struktur, dimana jika beban yang bekerja pada suatu elemen melebihi beban yang direncanakan diawal maka akan berdampak fatal pada bahngunan. Berdasarkan SNI 1727:2013 beban minimum untuk perencanaan bangunan gedung dan struktur lainnya, bangunan tersebut harus dirancang berdasarkan material standart dan spesifikasi tertentu dan harus direncanakan sesuai dengan kombinasi beban yang sudah ditetapkan sebagai berikut.

2.7.1 Beban mati

Beban mati merupakan berat dari seluruh bahan konstruksi yang digunakan, termasuk lantai, atap, dinding, plafon, tangga dan komponen arsitektural dan struktural lainnya. Namun pada perencanaan barang ini pekerjaan plambing, elektrikal, dan lainnya tidak diperhitungkan (masuk kedalam batasan masalah). Maka dari itu untuk beban material tersebut tidak diperhitungkan dalama pembebanan.

Beban mati didapatkan dengan cara memperhitungkan berat sendiri yang terdiri dari berat isi beton, berat isi baja, berat atap dan lain-lain. McCormac & Csernak (2012) mengatakan bahwa estimasi beban atau dimensi profil dapat direncanakan oleh *egineer* dengan mendekati beban atau dimensi kenyataan (dilapangan) untuk menghemat waktu dalam melakukan desain ulang akibat estimasi yang kurang tepat.

Tabel 2. 3 Berat sendiri bahan bangunan dan komponen gedung

Bahan Bangunan	Berat	Satuan
Baja	7850	Kg/m^3
Beton	2200	Kg/m^3
Beton bertulang	2400	Kg/m ³
Kayu (Kelas I)	1000	Kg/m ³
Pasir (kering udara)	1600	Kg/m ³
Komponen Gedung		
Spesi dari semen, per cm tebal	21	Kg/m^2
Dinding bata merah, Pas. ½ bata	250	Kg/m ²

Bahan Bangunan	Berat	Satuan
Penutup atap genting	50	Kg/m^2
Penutup lantai ubin semen per cm tebal	24	Kg/m ²
	/C 1	DDIII (C. 1002)

(Sumber: PPIUG,1983)

2.7.2 Beban hidup

Beban hidup merupakan beban yang ada akibat pengguna gedung tersebut atalu struktur lainnya yang tidak termasuk beban lingkungan dan beban konstruksi, seperti beban hujan, beban gempa, bban amgin dan beban-beban lainnya. Beban hisup juga didefenisikan sebagai beban maksimum yang bekerja akibat penggunaan gedung tersebut, yang mana nilainya harus lebih besar dari beban merata minimum yang sudah ditetapkan pada SNI 1727:2013. Hal tersebut bisa dilihat pada tabel berikut.

Tabel 2. 4 Beban hidup terdistribusi merata minimum, L_O, dan beban hidup terpusat minimum

Hunian atau penggunaan	Merata psf	Terpusat lb
	(kN/m^2)	(kN)
Apartemen	(Rumah tinggal)	
Sistem lantai akses		
Ruang kantor	50 (2.4) 2000(8.9)	
Ruang komputer	100 (4.79)	2000(8.9)
Gedung persenjataan dan ruang latihan	150 (7.18)	
Ruangg pertemuan		
Kursi tetap (terikat dilantai)	100 (4.79a)	_
Lobi	100 (4.79a)	_
Kursi dapat dipindahkan	100 (4.79a)	
Panggung pertemuan	100 (4.79a)	
Lantai podium	100 (4.18a)	
	1.5 kali beban hidup	
	untuk daerah yang	
Balkon dan dek	dilayani. Tidak perlu	
	melebihi 100 psf (4.79	
	kN/m^2)	
Jalur untuk akses pemeliharaan	40 (1.92)	300 (1.33)
Koridor	100 (4.79) sama seperti	
	pelayannan hunian	
	kecuali diesebutkan lain	
Lantai pertama		
Lantai lain		
Ruang makan dan restoran	100 (4.79)a	

Hunian (lihat rumah tinggal)	
Hunian mesin elevator (pada daerah 2	300 (1.33)
in x 2 in. (50 mm x 50 mm)	
Dst.	

(Sumber: SNI 03-1727, 2013)

2.7.3 Kombinasi pembebanan

Kombinasi pembebanan berdasarkan SNI 1727:2017 ada tujuh yang digunakan untuk metode desain kekuatan. Beban-beban tersebut adalah beban mati (D), beban hidup (L), Beban hidup atap (Lr), beban salju (S), beban hujan , beban angin (W), dan beban gempa (E). Kombinasi pembebanan yang dimaksud dapat dilihat pada tabel 2. Berikut.

Tabel 2. 5 Kombinasi pembebanan

No	Kombinasi beban (LFRD)
1	1.4D
2	$1.2D + 1.6L + 0.5(L_r \text{ atau S atau R})$
3	1.2D + 1.6(L r atau S atau R) + (0.5L atau 0.8W)
4	$1.2D + 1.0W + L + 0.5(L_r \text{ atau S atau R})$
5	1.2D + 1.0E + L + 0.2S
6	0.9D + 1.0W
7	0.9D + 1.0E

(Sumber: Badan Standarisasi Nasional, 2013)

2.7.4 Pembebanan pada *lift*

Beban yang bekerja akibat bergeraknya elevator/ dianggap sebagai beban terpusat akibat gaya yang bekerja terhadap berat kapasitas elevator sendiri yang diasumsikan elevator akan berhenti pada setiap lantai bangunan. Sedangkan beban reaksi akibat ruang mesin dan pit sudah diketahui pada katalog sesuai dengan spesifikasi rencana.

1. Koefisien kejut beban hidup oleh keran

Pada PPIUG 1983 Pasal 3.3(3) menyatakan bahwa beban keran (kereta angkat) yang membebani struktur pemikulnya terdiri dari berat sendiri keran (kereta angkat) ditambah muatan yang diangkatnya, dalam kedudukan keran induk dan keran angkat yang paling menentukan bagi struktur yang ditinjau.

Untuk beban rencana beban keran harus diambil dan mengalikannya dengan koefisien kejut yang telah ditentukan dengan rumus berikut:

$$\Psi = (1 + K_1.K_2.V) \ge 1,15 \tag{2.14}$$

Dimana:

 Ψ = Koefisien kejut yang nilainya tidak boleh diambil kurang dari 1,15

V = Kecepatan angkat maksimum (m/det) pada pengangkatan muatan maksimum dalam kedudukan keran induk dan keranangkat yang paling menentukan bagi struktur yang ditinjau, dan nilainya tidak perlu diambil lebih dari 1.00 m/det.

 K_1 = Koefisien yang bergantung pada kekakuan struktur keran induk,yang untuk keran induk dengan struktur rangka, pada umumnyanilainya dapat diambil sebesar 0.6

 K_2 = Koefisien yang bergantung pada sifat mesin angkat dari keranangkatnya, dan diambil sebesar 1.3

- Pada mesin listrik biasa atau mesin-mesin lain dengan sifat-sifat yang sejenis $K_2 = 1,0$.
- Pada mesin sangkar asinkron dan mesin termis dengan kopling $K_2 = 1,3$.
- Pada mesin dengan pembatas percepatan otomatis dengan alat cengkarm $K_2 = 0.75$ dan dengan alat kait $K_2 = 0.50$.

Untuk menghitung beban yang bekerja pada balok adalah:

$$P = R_1 \cdot \Psi \tag{2.15}$$

2. Beban terpusat *lift*

Pada SNI 1727:2020 pasal 4.6 tentang impact load atau beban impak (Peraturan Pembebanan Untuk Bangunan Gedungdan Struktur Lain) menyatakan bahwa semua beban elevator harus ditingkatkan 50% untuk mesin yang bergerak maju dan mundur atau unit tenaga-driven, Semua persentase harus meningkat bila disyaratkan oleh produsen.

$$RA = R_1.K_{IJ} \tag{2.16}$$

$$RB = R_2.K_{LL} \tag{2.17}$$

Dimana:

 K_{LL} = faktor elemen beban hidup

 R_1, R_2 = Reaksi gaya akibat beban lift pada struktur

2.7.5 Beban angin

Beban angin merupakan beban yang bekerja pada struktur atau gedung akibat tekanan dari gerakan angin. Bbeban angin tergantung pada lokasi tempat bangunan itu berdiri dan ketinggian struktur atau bangunan (Agus Setiawan, 2013).

Berdasarkan PPIUG 1983, beban angin ditentukan dengan menganggap bahwa terdapat tekanan positif dan tekana negatif (isapan) yang bekerja tegak lurus pada bidang-bidang yang ditinjau. Besarnya tekanan angin dinyatakan dalam satuan kg/m². Koefisien-koefisien tekanan angin ditentukan sebagai berikut.

- a. Tekanan tiup harus diambil minimal 25 kg/m²
- b. Tekanan tiup dilaut dan ditepi laut sampai sejauh 5 km dari pantai harus diambill minimal 40 kg/m²
- c. Untuk daerah-daerah didekat laut dan daerah-daerah lain tertentu, dimana terdapat kecepatan-kecepatan angin yang mungkin menghasilkan tekanan tiup yang besar daripada yang ditentukan dalam ketentuan a,b, maka tekanan tiup (p) harus dihitung menggunakan persamaan sebagai berikut:

$$p = \frac{v^2}{16} \frac{kg}{m^2} \tag{2.18}$$

Dimana:

 $P = tekanan tiup angin (kg/m^2)$

2.7.6 Beban gempa

Beban gempa adalah semua beban statik ekuivalen yang bekerja pada struktur atau bangunan karena adanya pergerakan tanah (gempa bumi), baik itu bergerak secara horizontal atau vertikal. Pengaruh gempa horizontal sangat lah menentukan beban gempa dari pada pengaruh gempa vertikal karena percepatan tanah arah horizontal lebih besar (Agus Setiawan, 2013).

Bangunan gedung dan struktur lain, termasuk sistem penahan gaya angin utama (SPGAU) dan seluruh komponen dan klading (K&K) gedung, harus dirancang untuk menahan beban angin sesuai dengan SNI 1727:2020. Untuk mendapatkan nilai statik ekuivalen beban gempa maka dilakukan langkah-langkah perhitungan sebagai berikut:

1. Kategori risiko bangunan dan faktor keutamaan gempa

Untuk mengetahui beban angin yang bekerja pada suatu bangunan maka dilakukan langkah awal dengan mengkategorikan risiko bangunan termasuk kedalam kategori risiko berapa. Tabel kategori risiko bangunan dan struktur lain dapat dilihat pada tabel berikut.

Tabel 2. 6 Kategori risiko bangunan dan struktur lain

Penggunaan atau pemanfaatan fungsi bangunan gedung dan struktur	Kategori risiko
Bangunan gedung dan struktur lain	
yang merupakan risiko rendah untuk	I
kehidupan manusia dalam kejadian	1
kegagalan	
Semua bangunan gedung dan struktur lain kecuali mereka terdaftar dalam	II
	11
kategori risiko I, III, dan IV	
Bangunan gedung dan struktur lain, kegagalan yang dapat menimbulkan	
risiko besar bagi kehidupan manusia.	
Bangunan gedung dan struktur lain,	
tidak termasuk dalam kategori risiko IV, dengan potensi untuk	
menyebabkan dampak ekonomi	II
substansial dan/atau gangguan massa	11
dari hari ke hari kehidupan sipil pada	
saat terjadi kegagalan. Bangunan	
gedung dan struktur lain tidak	
termasuk dalam risiko kategori IV	
(termasuk, namun tidak terbatas pada,	
fasilitas yang manufaktur, proses,	
menangani, menyimpan,	
menggunakan, atau membuang zat-	
zat seperti bahan bakar berbahaya,	
bahan kimia berbahaya, limbah	
berbahaya, atau bahan peledak) yang	
mengandung zat beracun atau mudah	
meledak di mana kuantitas material	
melebihi jumlah ambang batas yang	
ditetapkan oleh pihak yang	
berwenang dan cukup untuk	
menimbulkan suatu ancaman kepada	
publik jika dirilis.	
Bangunan gedung dan struktur lain	
yang dianggap sebagai fasilitas	

Penggunaan atau pemanfaatan fungsi	Kategori risiko
bangunan gedung dan struktur	
penting. Bangunan gedung dan	
struktur lain, kegagalan yang dapat	
menimbulkan bahaya besar bagi	
masyarakat. Bangunan gedung dan	
struktur lain (termasuk, namun tidak	
terbatas pada, fasilitas yang	
memproduksi, memproses,	
menangani, menyimpan,	IV
menggunakan, atau membuang zat-	
zat berbahaya seperti bahan bakar,	
bahan kimia berbahaya, atau limbah	
berbahaya) yang berisi jumlah yang	
cukup dari zat yang sangat beracun di	
mana kuantitas melebihi jumlah	
ambang batas yang ditetapkan oleh	
pihak yang berwenang dan cukup	
menimbulkan ancaman bagi	
masyarakat jika dirilis. Bangunan	
gedung dan struktur lain yang	
diperlukan untuk mempertahankan	
fungsi dari kategori risiko IV struktur	
lainnya.	
	(Sumber : SNI 1726, 2019)

Kemudian dari kategori risiko bangunan tersebut didapatkan nilai faktor keutamaan gempa berdasarkan tabel 4 pada SNI 1727:2020.

Tabel 2. 7 Faktor keutamaan gempa

Kategori risiko	Faktor keutamaan gempa, I _e
I atau II	1,0
III	1,25
IV	1,50

(Sumber: SNI 1726, 2019)

2. Menentukan kategori desain seismik (KDS) berdasarkan nilai S_{DS} dan S_{D1} berdasarkan tabel berikut.

Tabel 2. 8 Kategori desain seismik berdasarkan parameter respons percepatan periode pendek

Nilai S _{DS}	Kategori risiko	
	I atau II atau II	IV
$S_{DS} < 0.167$	A	A
$0.167 \le S_{DS} < 0.33$	В	С
$0.33 \le S_{DS} < 0.50$	С	D
$S_{DS} \le 0.50$	D	D

(Sumber: SNI 1726, 2019)

Tabel 2. 9 Kategori desain seismik berdasarkan parameter respons percepatan periode 1 detik

Nilai S _{DS}	Kategori risiko	
	I atau II atau II	IV
$S_{D1} < 0.067$	A	A
$0.067 \le S_{D1} < 0.133$	В	С
$0.133 \le S_{D1} < 0.20$	C	D
$S_{D1} \leq 0.20$	D	D

(Sumber: SNI 1726, 2019)

3. Nilai koefisien Ct dan x

Nilai koefisien Ct dan x ditentukan berdasarkan tabel :

 $\textbf{Tabel 2. 10} \ \text{Nilai parameter periode pendekatan} \ C_t \ dan \ x$

Tipe struktur	C_{t}	X
Sistem rangka pemikul momen di mana rangka		
memikul 100 % gaya seismik yang disyaratkan dan		
tidak dilingkupi atau dihubungkan dengan		
komponen yang lebih kaku dan akan mencegah		
rangka dari defleksi jika dikenai gaya seismik:		
 Rangka baja pemikul momen 	0,0724	0,8
Rangka beton pemikul momen	0,0466	0,9
Rangka baja dengan bresing eksentris	0,0731	0,75
Rangka baja dengan bresing terkekang terhadap	0,0731	0,75
tekuk		
Semua sistem struktur lainnya	0,0488	0,75

(Sumber: SNI 1726, 2019)

4. Nilai koefisien modifikasi respons, R

Nilai koefisien modifikasi respons, R, sesuai dengan KDS berdasarkan tabel pada lampiran, SNI 1726:2019 tabel-12.

5. Nilai periode struktur (T_a)

$$T_a = C_t \times h_n^{x} \tag{2.19}$$

Dimana:

 ${\bf h}_{n}$ = ketinggian struktur diatas dasar hingga tingkat tertinggi struktur Periode struktur juga dapat dihitung menggunakan persamaan alternatif, yaitu .

$$T_a = 1 \times N \tag{2.20}$$

Dimana:

N = Jumlah tingkat struktur

6. Faktor k

Faktor k dapat dihitung berdasarkan ketentuan sebagai berikut.

- a. Jika $T_a \le 0.5$, maka nilai k=1
- b. Jika $0.5 \le T_a \le 2.5$ maka dilakukan perhitungan interpolasi linear

$$y = y_2 + (y_2 - y_1 \times \frac{x - x_1}{x_2 - x_1})$$
 (2.21)

- c. Jika $T_a \ge 2.5$, maka k = 2
- 7. Koefisien respon seismik (C_s)

$$C_{s} = \frac{S_{DS}}{R/I_{e}} \tag{2.22}$$

Nilai C_s ditentukan berdasarkan batasan sebagai berikut :

a. Batasan maksimal

Untuk nilai
$$T \le T_r$$
 maka batasan maksimal $C_{s max} = \frac{S_{DS}}{T(\frac{R}{I_r})}$ (2.23)

b. Batasan minimal

$$C_{\text{s min}} = 0.004 \times S_{\text{DS}} \times I_{\text{e}} \ge 0.01$$
 (2.24)

Khusus untuk struktur yang berlokasi didaerah dengan nilai S₁> 0,6g, maka

batasan minimal adalah
$$C_{s min} = \frac{0.5S_1}{(\frac{R}{l_e})}$$
 (2.25)

8. Gaya geser dasar seismik

Nilai gaya geser seismik dapat dihitung menggunakan persamaan:

$$V = C_s \times W \tag{2.26}$$

Dimana:

V = Gaya geser seismik

W = Berat seismik efektif total

9. Faktor distribusi vertikal, C_{vx}

$$C_{vx} = \frac{W_x \times h^k}{\sum_{i=1}^{n} W_i \times h_i}$$
 (2.27)

Dimana:

 C_{vx} = Faktor distribusi vertikal

 W_i dan W_x = berat seismik efektif struktur tingkat i atau x

h_i dan h_x = Tinggi dari dasar sampai tingkat i atau x

10. Gaya gempa statik ekuifalen (F_x)

Gaya gempa statik ekuifalen (F_x) dihitung untuk masing-masing tingkat struktur dengan menggunakan persamaan :

$$F_{x} = C_{vx} \times V \tag{2.28}$$

Dimana:

 F_x = Gaya gempa statik ekuifalen

V = Gaya geser dasar

2.8 Struktur baja

2.8.1 Baja Konstruksi

Baja adalah suatu paduan logam yang tersusun dari besi sebagai bahan dasar dan karbon sebagai unsur paduan utama. Kandungan unsur karbon baja bervariasi dari hingga 2,1% berat tergantung pada kualitasnya. Karbon mempunyai pengaruh besar terhadap sifat-sifat baja. Penambahan karbon pada baja dapat meningkatkan kekerasannya dan kekuatan tariknya, namun di sisi lain, membuatnya rapuh atau getas dan mengurangi keuletannya (Beumer, 1994).

Menurut Arifi dan Setyowulan (2021) dalam bukunya tentang struktur baja, baja merupakan salah satu material konstruksi yang banyak digunakan setelah beton.

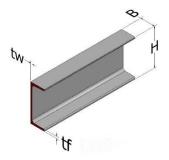
Material berbahan dasar logam ini mempunyai banyak keunggulan khususnya ketahanan dan kecepatan kerja, sangat diminati sebagai material konstruksi, baik untuk struktur bangunan maupun untuk jembatan. Bahan baja sebagai elemen

struktur bergantung pada komposisi kimianya, sifat tariknya dan metode pembuatannya seperti karbon, baja berkekuatan tinggi pada aluminium mutu rendah dan baja karbon yang diberi perlakuan panas. Dasar pengklasifikasian ini akan sangat mempengaruhi sifat-sifat baja sebagai bahan konstruksi.

Ada banyak jenis baja yang digunakan dalam kontruksi dan jenis baja struktur ini dibedakan sesuai dengan bentuk profilnya, setiap profil baja mempunyai fungsi yang berbeda-beda. Berikut beberapa jenis baja profil yang banyak digunakan dalam perencanaan konstruksi, sebagai berikut:

1. Wide Flange (IWF)

Balok IWF merupakan jenis balok konstruksi dengan sayap lebar, tipis, dan badan tebal. Bentuknya menyerupai huruf "I" jika dilihat dari samping, maka dari itu disebut IWF (I Section Wide Flange) . Balok IWF sering digunakan dalam proyek konstruksi karena mempunyai daya dukung yang baik dan efisiensi material yang tinggi. Pemilihan ukuran balok IWF ditentukan berdasarkan beban yang akan didukung dan jenis aplikasi. Biasanya perencana struktur menggunakan spesifikasi standar yang mencantumkan dimensi setiap ukuran balok IWF. Dari spesifikasi standart tersebut, perencana dapat menentukan ukuran yang paling sesuai berdasarkan kebutuhan proyek.

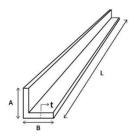

Gambar 2. 9 Profil Baja IWF

(Sumber: limtrade, 2025)

2. Kanal UNP

Besi UNP, dikenal juga sebagai U-Channel atau Kanal U, merupakan salah satu jenis profil baja yang memiliki bentuk penampang melintang seperti huruf

"U". Profil ini terdiri dari bagian dasar yang datar dan dua sayap vertikal . Bentuknya yang unik menjadikan besi UNP sangat cocok untuk berbagai aplikasi struktur dan mekanik. Besi UNP biasanya terbuat dari baja karbon yang dikenal kuat dan tahan lama. Untuk aplikasi yang memerlukan ketahanan korosi lebih besar, besi UNP juga dapat diproduksi dari baja galvanis. Kualitas material yang digunakan sangat penting agar besi UNP mampu menahan beban dan tekanan yang diterima dalam berbagai aplikasi. Fungsi besi UNP sendiri sangat beragam. Salah satu kegunaan utamanya adalah sebagai dudukan penutup atap purlin yang berfungsi sebagai penopang atap.


Gambar 2. 10 Profil kanal UNP

(Sumber: limtrade, 2025)

3. Baja Siku (Angle Bar)

Besi Siku adalah adalah potongan logam besi yang diletakan secara horizontal dengan sudut 90 derajat atau sudut siku-siku ke arah mesin cetak dan merupakan sebuah bar penopang yang terbuat dari baja galvanis dan sering sekali digunakan untuk las atau bor. Logam Besi ini juga disebut dengan nama lain angle bar, bar siku dan sering juga disebut sebagai "L-Bracket". Bar siku atau angle bar atau bar siku digunakan untuk mengubah jaring ketika besi dimasukan dari samping atau langsung ke former folder, selain itu juga digunakan pada ribbon folder. Biasanya besi ini juga diisi dengan udara dan lubang untuk mengurangi gesekan pada jaring. Besi siku atau angle bar atau bar siku sering juga digunakan sebagai penopang tiang dan fondasi lainnya, namun ternyata kegunaan besi ini dapat melebihi dari yang biasanya digunakan. Selain

itu logam bar besi ini juga berfungsi untuk memberikan kekuatan tambahan serta dapat melindungi struktur dari korosi bahkan menambah stabilitas.

Gambar 2. 11 Profil Baja Siku

(Sumber: smsperkasa, 2025)

2.8.2 Sifat-sifat mekanis baja

Sifat mekanis baja merupakan karakteristik yang memperlihatkan bagaimana material baja tersebut berperilaku ketika diberikan beban. Sifat-sifat mekanis baja dapat diketetahui melalui pengujian, yaitu melakukan uji tarik dan uji tekan terhadap baja. Sifat mekanis baja secara umum dapat dilihat pada tabel berikut.

Tabel 2. 11 Sifat mekanis baja struktural secara umum

Sifat Mekanis	Simbol	Nilai	Satuan
Modulus	Е	200.000	MPa
elastisitas			
Modulus geser	G	80.000	MPa
Nisbah poisson	μ	0,3	
Koefisien	α	12×10^{-6}	/°C
pemuaian			

(Sumber: SNI 1729, 2002)

2.8.3 Keuntungan dan kerugian penggunaan material baja

Pemilihan material baja sebagai material bangunan didasarkan pada keunngulan yang dimiliki oleh baja itu sendiri, dimana baja memiliki keunggulan sebagai berikut.

- a. Baja memiliki kekuatan yang tinggi dapat mengurangi berat dan ukuran struktur secara keseluruhan.
- b. Tingkat elastisitas baja yang tinggi sesuai dengan hukum hooke dan momen inersiabaja dapat dihitung secara akurat.
- c. Daktilitas baja yang cukup tinggi, dimana daktilitas yang dimaksuda adalah kemampuan suatu material dalam menahan deformasi yang besar tanpa terjadinya keruntuhan dengan nilai tegangan tarik yang tinggi.
- d. Material baja merupakan material yang kuat karena memiliki nilai daktilitas dan kekuatasn yang tinggi. Dimana ketika material baja diberikan beban dan baja tersebut mengalami deformasi, baja tersebut tetap akan bisa menahan beban yang diberikan.
- e. Mudah dipasang dan digabungkan dengan struktur lainnya, sehingga meningkatkan efisiensi waktu pengerjaan.

Namun disamping keunggulan atau keuntungan menggunakan baja sebgai material konstruksi, baja juga memiliki kelemahan yaitu:

- a. Apabila baja terpapar dengan udara dan air secara langsung dapat menyebabkan baja mengalami korosi, maka baja harus diberikan perkaluan khusus seperti dicat secara berkala.
- b. Baja merupakan material penghantar panas yang sangat baik, maka dari itu dibutuhkan lapisan tahan api (*fireproofing*) pada baja.
- c. Tekuk pada baja sering terjadi terutama pada elemen tekan, maka elemen takan seperti kolom harus diberi pengaku untuk menahan atau mencegah tejadinya tekuk.
- d. Keruntuhan akibat getas dapat terjadi pada baja dimana pada saat tertentu sifat daktilitas baja akan hilang dan terjadi brittle failure pada bagian yang memiliki konsentrasi tegangan tinggi.

2.9 Konsep perencanaan struktur baja

2.9.1 Dasar desain struktur baja

Dalam analisis struktur baja terdapat 2 konsepp yang bisa digunakan yaitu konsep ASD (Allowable Stress Design), dimana perencanaan ini didasarkan pada tegangan kerja/working stress design dan konsep LRFD (Load and Resistance

Factor Design) yang didasarkan pada perencanaan kondisi batas/limit states design. Dalam kurun waktuiu lebih dari 100 tahun konsep ASD sudah digunakan dalam perencanaan baja, dan dalam kurun waktu 20 tahun terakhir perencanaan struktur baja beralih pada konsep LFRD berdasarkan konsep probabilitas yang jauh lebih rasional.

LFRD merupakan perencanaan dimana beban terfaktor harus memperhatikan kondisi batas yaitu kondisi maksimum yang dapat diberikan sebuah penampang yang berada di luar batas inelastis (elastisitas) dan memperhitungkan tegangan ultimate baja(fu). Konsep LFRD digunakan dalam AISC (*American Institut of Steel Construction*), dimana syarat struktur dikatakan aman harus memenuhi persyaratan pada persamaan :

$$\sum yi.Qi \le \emptyset R_n \tag{2.29}$$

Dimana:

yi = Faktor beban

Qi = Beban yang harus dipikul oleh struktur

 $R_n = Kuat nominal$

Ø = Faktor reduksi

Desain struktur direncanakan berdasarkan persamaan diatas, dimana Ru merupakan kekuatan perlu yang berasal dari kombinasi pembebanan DFBT.

$$R_{u} \le \emptyset R_{n} \tag{2.30}$$

Dimana:

 $R_u = Kekuatan perlu$

 $R_n = Kekuatan nominal$

Ø = Faktor reduksi

2.9.2 Batang tarik

Baja merupakan material yang memiliki kekuatan untuk menahan gaya tarik dan tekan dan memiliki mutu yang tinggi sehinggi dimensinya cenderung langsing (Dewobroto, 2016). Batang tarik biasanya dapat ditemukan pada struktur jembatan, rangka atap, ikatan angin dan lain sebagainya. Beberapa profil yang sering digunakan utnuk batang tarik ialah profil siku, WF, pelat, dan lain-lain. Berdasarkan SNI 1729:2020 batang tarik yang dirancang harus memiliki rasio

kelangsingan L/r tidak melebihi 300, dimana L adalah panjang batang tarik dan r adalah jari-jari girasi minimum penampang, tetapi syarat ini tidak berlaku pada batang gantung yang mengalami gaya tarik.

a. Tahanan nominal tarik

Pada batang tarik terdapat 3 jenis keruntuhan yang mungkin akan terjadi :

- Keruntuhan leleh terjadi pada daerah yang jauh dari sambungan dimana pada kasus ini luas penampang bruto (tanpa pengurangan lubang baut) sangatlah menentukan keruntuhan ini.
- 2. Keruntuhan fraktur terjadi pada daerah sambungan, dimana keruntuhan ini ditentukan oleh luas neto akibat adanya pengurangan luas lubang baut pada area sambungan.
- 3. Keruntuhan geser blok terjadi pada daerah sambungan akibat sobeknya elemen plat (pelat penyambung atau pelat profil yang disambung) yang mengalami tarik.

Berdasarkan konsep LFRD kuat tarik desain harus memiliki nilai terendah yang diperoleh sesuai dengan keadaan batas dari leleh tarik pada penampang bruto dan keruntuhan tarikpada penampang neto.

$$P_{u} \le \emptyset_{t} P_{n} \tag{2.31}$$

Dimana:

 P_u = Gaya tarikk aksial terfaktor (kN)

 P_n = Tahanan nominal penampang (kN)

 \emptyset_t = Faktor tahanan tarik

Besarnya nilai Ø_t dan nilai P_n ditentukan sebagai berikut.

Keruntuhan leleh untuk pada penampang bruto

$$P_n = F_y A_g \tag{2.32}$$

Dimana:

 $\phi_{t} = 0.90$

 $A_g = Luas$ bruto dari komponen struktur (mm²)

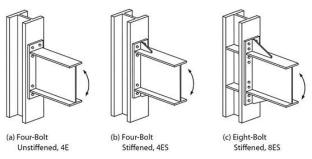
 F_v = Tegangan leleh minimum yang disyaratkan (Mpa)

Untuk keruntuhan fraktur pada penampang neto

$$P_{n} = F_{u}A_{e} \tag{2.33}$$

Dimana:

 $\phi_{t} = 0.75$


 $A_e = Luas neto efektif (mm^2)$

F_u = Kekuatan tarik minimum yang disyaratkan (Mpa)

a. Luas neto

Lubang yang dibuat pada sambungan untuk menempatkan alat pengencang seperti baut, paku keling menakibatkan pengurangan luas penampang dan juga tahanan penampang tersebut.

Keruntuhan fraktur pada batang tarik terjadi pada sambungan yang disebabkan oleh berkurangnya luas penampang yang mengalami tarik karena adanya lubang baut. Berikut merupakan gambar contoh sambungan baut pada struktur baja.

Gambar 2. 12 Sambungan baut pada struktur baja

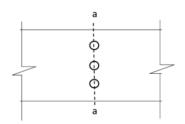
(Sumber: Segui, 2018)

Perhitungan luas penampang neto dipengaruhi oleh konfigurasi lubang baut terhadap potongan melintang penampang. Terdapat dua konfigurasi lubang baut, yaitu:

1. Lubang baut segaris

$$A_n = A_g - n.d.t \tag{2.34}$$

Dimana:


 A_n = Luas penampang neto (mm²)

 A_g = Luas penampang bruto (mm²)

n = Jumlah baut segaris

d = Diameter lubang baut (mm)

t = Tebal penampang (mm)

Gambar 2. 13 Lubang baut segaris

(Sumber: Arifi & Setyowulan, 2020)

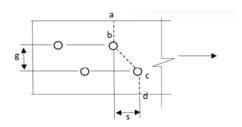
2. Baut tidak segaris (staggered)

$$A_n = A_g - n.d.t + \sum \frac{s^2.t}{4g}$$
 (2.35)

Dimana:

 A_n = Luas penampang neto (mm²)

 A_g = Luas penampang bruto (mm²)


n = Jumlah baut segaris

d = Diameter lubang baut (mm), diambil 1/16 in (2 mm) lebih besar dari diameter baut

t = Tebal penampang (mm)

s = Jarak antar baut dalam arah sejajar gaya (mm)

g = Jarak antar baut dalam arah tegak lurus gaya (mm)

Gambar 2. 14 Lubang baut tidak segaris

(Sumber: Arifi & Setyowulan, 2020)

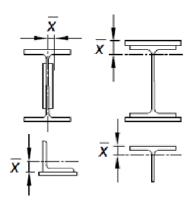
b. Luas neto efektif

Efesiensi suatu sambungan merupakan fungsi dari daktilitas material, jarak anatar pengencang, konsentrasi tegangan pada lubang baut serat sebuah

fennomena yang sering disebut dengan istilah *shear lag*. Shear lag akan ada jika sebuah komponen struktur tarik hanya disambung sebagian saja. Salah satu cara mengatasi masalah *shear lag* adalah dengan memperpanjang sambungan. Masalah *shear lag* dalam perhitungan diantisipasi dengan menggunakan istilah luas neto efektif. Luas neto dari komponen struktur batang tarik hasrus ditentukan sebagai berikut.

$$A_e = A_n U \tag{2.36}$$

Dimana nilai faktor *shear lag* (U) ditentukan berdasarkan tabel D3.1 SNI 1729:2020 (lampiran), dengan beberapa penjelasan sebagai berikut.


- 1. Semua komponen struktur batang tarik dimana bebannya disalurkan langsung keelemen profil melintang dengan sambungan las (kecuali dalam kasus 4, 5,6) maka nilai U yang dipakai adalah 1.
- 2. Semua komponen struktur batang tarik, kecuali pelat dan profil struktur berongga (PSR), dengan beban tarik disalurkan kebeberapa elemen, tetapi tidak semua elemen profil melintang melelaui pengencang atau las longitudinal dalam kombinasi dengan las transversal, maka nilai U adalah :

$$U = 1 - \frac{\bar{x}}{1} \tag{2.37}$$

Dimana:

 \bar{x} = eksentrisitas sambungan atau jarak antara titik berat penampang ke sambungan (mm)

1 = Panjang las

Gambar 2. 15 Jarak titik berat antara penampang ke sambungan

(Sumber: SNI 1729, 2020)

- 3. Semua komponen struktur tarik dimana beban tarik hanya disalurkan melalui las transversal kebeberapa tetapi tidak semua dari elemen profil melintang, maka nilai U adalah 1.
- 4. Pelat, siku, kanal, T dan profil WF yang elemennya disambung, dengan beban tarik disalurkan hanya melalui las longitudinal, maka nilai U adalah .

$$U = \frac{3l^2}{3l^2 + w^2} \left(1 - \frac{\bar{x}}{l} \right) \tag{2.38}$$

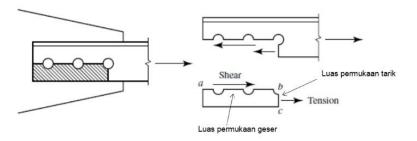
Dimana:

1 = Panjang las

 \bar{x} = eksentrisitas sambungan atau jarak antara titik berat penampang ke sambungan (mm)

w = Jarak antar las memanjang (lebar pelat)

c. Geser blok (block shear)


Ketika sebuah elemen pelat tipis yang dibeikan beban tarik dan disambung menggunakan alat pengencang, maka tahanan dari komponen tersebut akan ditentukan oleh kondisi batas sobek atau sering disebut geser blok (Setiawan, 2013). Keruntuhan geser blok merupakan suatu keruntuhan yang mekanisma keruntuhannya adalah kombinasi antara geser dan tarik yang melewati lubanglubang baut pada komponen struktur tarik. Selain pada pelat tipis yang dikenai beban tarik, keruntuhan geser juga dapat terjadi pada sambungan pendek, dimana sambunagan menggunakan 2 baut atau kurang pada garis searah dengan bekerjanya gaya. Berikut merupakan contoh gambar keruntuhan geser blok pada struktur baja sebagai berikut.

Gambar 2. 16 Keruntuhan geser blok pada struktur baja

(Sumber: Green dkk, 2003)

Pada keruntuhan geser ada dua jenis bidang keruntuhan yaitu bidang yang mengalami gaya geser yaitu bidang yang sejajar dengan arah gayaanya dan bergerak disepanjang baut, serta bidang tarik yaitu bidang yang tegak lurus terhadap gaya tarik yang bekerja pda sambungannya. Kombinasi dari kedua gaya ini menyebabkan lepasnya satu blok atau area dari sambungan. Apabila gaya tarik dikerjakan pada sambungan meningkat, bidang yang lemah akan mendekati kekuatan runtuhnya.

Gambar 2. 17 Kombnasi keruntuhan geser dan tarik pada geser blok

(Sumber: Nasution, 2019)

Berdasarkan SNI 1729:2020 sesuai desain LRFD, syarat kekuatan batasnya adalah :

$$R_{u} \le \emptyset R_{n} \tag{2.39}$$

$$R_n = 0.6.Fu.Anv+Ubs.Fu.Ant \le 0.6.Fy.Agv+Ubs.Fu.Ant$$
 (2.40)

Dimana:

R_u = Gaya tarik aksial terfaktor yang terjadi pada sambungan (kN)

 $\Phi = 0.75$

 R_n = Kekuatan nominal dari sambungan (kN)

 F_y = Tegangan leleh minimum yang diisayaratkan (Mpa)

F_u = Kekuatan leleh minimum yang diisayaratkan (Mpa)

Anv = Luas neto elemen yang menahan gaya tarik (mm^2)

Agv = Luas bruto elemen yang menahan gaya tarik (mm²)

 \emptyset = Faktor ketahanan = 0,75

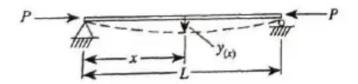
Ubs = 1, Jika tegangan tarik merata

Ubs = 0.5, Jika tegangan tarik tidak merata

2.9.3 Batang tekan

Batang tekan biasanya ditujuan pada komponen struktur yang mengalami bebn tekan terpusat pada titik berat penampangnya. Batang tekan banyak dijumpai pada elemen struktur kolom. Contoh pengaplikasian batang tekan pada struktur bangunan dilihat pada **Gambar 2.18.**

Gambar 2. 18 Struktur kolom menggunakan material baja


(Sumber: Jasa konstruksi baja H beam, 2016)

Batang tekan dapat mengalami keruntuhan karena terjadinya tekuk (*buckling*), dimana elemen struktur menerima gaya aksial tekan. Maka dari itu syarat kestabilan dalam mendesain kestabilan komponen struktur tekan

sangatlah penting, untuk menghindari terjadinya tekuk pada elemen yang mengalami tekan.

a. Tekuk elastik euler

Teori ini pertama kali dikenalkan oleh Leonhard Euler pada tahun 1744, dimana komponen struktur yang terbebani secara konsentris, apabila seluruh serat bahan masih dalam kondisi elastik hingga terjadinya tekuk, perlahanlahan akan melengkung, seperti yang terlihat pada gambar berikut ini.

Gambar 2. 19 Kolom euler

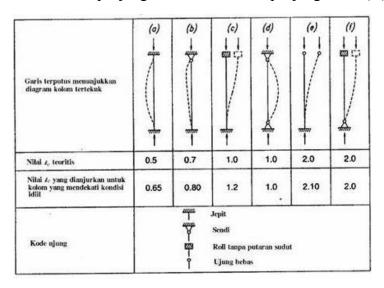
(Sumber : Setiawan, 2018)

b. Panjang efektif

Panjang efektif dari suatu komponen struktur tekan (l_c) digunakan untuk menghitung kelangsingan batang tekan (l_c/r) , dimana nilai l_c ditentrukan berdasarkan nilai faktor panjang efektif, K.

Dimana:

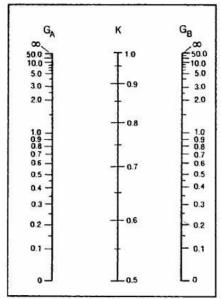
 $l_c = KL = Panjang efektif batang tekan (mm)$


L = Panjang tanpa diberi pengaku lateral dari komponen struktur (mm)

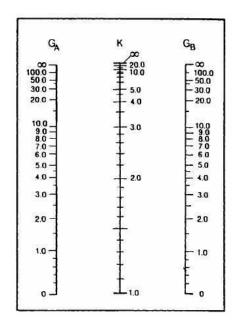
r = Radius girasi, in (mm)

Pada SNI 1729:2020, komponen struktur yang dirancang berdasarkan tekan, rasio kelangsingan efektif KL/r, sebaiknya tidak melebihi 200.

Nilai K atau faktor panjang tekuk dipengaruhi oleh jenis tumpuan dan panjang batang elemen yang mengalami gaya aksial tekan ditunjukkan pada tabel berikut ini.


Tabel 2. 12 Faktor panjang efektif atau faktor panjang tekuk (K)

(Sumber : AISC, 2010)


Dalam menentukan nilai K pada struktur portal digunakan nomogram pada Gambar 2. dan Gambar 2. Dengan nilai GA dan GB ditentukan berdasarkan rumus berikut.

$$G = \frac{\sum (\text{Ec.Ic/Lc})}{\sum (\text{Eg.Ig/Lg})} = \frac{\sum (\text{E.I/L})c}{\sum (\text{E.I/L})g}$$
(2.41)

Gambar 2. 20 Nomogram penentuan nilai K pada komponen struktur bergoyang

(Sumber : AISC, 2010)

Gambar 2. 21 Nomogram penentuan nilai K pada komponen struktur tak bergoyang

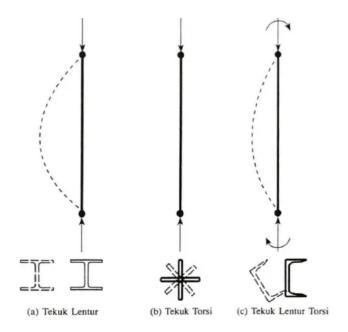
(Sumber : AISC, 2010)

c. Tekuk lokal dan tekuk global pada batang tekan

Tekuk merupakan faktor utama dari keruntuhan batang tekan yang harus diperhitungkan khususnya pada elemen yang meminili nilai kelangsingan yang tinggi, dimana tekuk pada suatu batang dipengaruhi oleh beberapa hal yaitu :

- 1. Luas penampang
- 2. Bentuk penampang terhadap kekakuan lentur
- 3. Panjang batang

4. Kondisi tumpuan


Suatu batang tekan yang mengalami tekuk lokal merupakan tekuk yang terjadi pada elemen penampang sayap atau badan profil akibat adanya gaya tekasn yang bekerja pada elemen tersebut. Apabila elemen cenderung langsing dengan panjang kolom yang pendek, maka batang tekan akan mengalami tekuk lokal seperti pada gambar berikut.

Gambar 2. 22 Batang tekan yang mengalami tekuk lokal

Sedangkan suatu batang tekan mengalami tekuk global merupakan tekuk yan terjadi pada batang secara memenjang atau longitudinal. Diman elemen penampang relatif tebal dengan panjang yang relatif panjang, maka batang tekan mengalami tekuk global.

Tekuk lokal terbagi atas dua elemen yaitu elemen non langsing dan elemen langsing. Rasio tebal terhadap lebar elemen tekan yang menahan gaya aksial dapat dilihat pada tabel yang terdapat pada lampiran. Tekuk global terbagi atas 3 kemungkinan jenis tekuk pada struktur yang mengalami gaya aksial tekan yaitu tekuk lentur, tekuk torsi, dan tekuk torsi lentur yang dapat dilihat pada gambar dibawah ini.

Gambar 2. 23 Tiga macam tekuk komponen struktur tekan

(Sumber: Setiawan, 2013)

d. Kekuatan tekan nominal

Kekuatan nominal ditentukan berdasarkan persamaaan:

$$P_{u} \le \emptyset_{c} P_{n} \tag{2.42}$$

Dimana:

 P_u = Gaya tekan aksial terfaktor (N)

$$\phi_{c} = 0.90$$

Pada SNI 1729:2020, desain komponen struktur untuk batang tekan diatur dalam bab E, dimana perencanaan batang tekan untuk pemilihan penerapan profil dapat dilihat pada lampiran.

e. Tekuk lentur tanpa elemen langsing

Pada SNI 1729:2020 Pasal E3, perencanaan batang tekan klasifikasi nonlangsing ($\lambda < \lambda_r$) yang mengalami tekuk lentur. Besarnya kuat tekan nominal P_n dapat dihitung menggunakan persamaan berikut :

$$P_n = F_{cr}.A_g \tag{2.43}$$

Dimana:

 $P_n = Kuat tekan nominal (kN)$

F_{cr} = Nilai tegangan kritis

 $A_g = Luas penampang kotor$

Nilai F_{cr} dapat ditentukan berdasarkan persamaan berikut :

1. Jika
$$\frac{L_c}{r} \le 4,71 \sqrt{\frac{E}{F_y}}$$
 atau $\frac{F_y}{F_e} \le 2,25$, maka (2.44)

$$F_{cr} = (0.658 \frac{F_y}{F_a}).F_y \text{ (Mpa)}$$
 (2.45)

2. Jika
$$\frac{L_c}{r} > 4.71 \sqrt{\frac{E}{F_y}}$$
 atau $\frac{F_y}{F_e} > 2.25$, maka (2.46)

$$F_{cr} = (0.877F_e)$$
 (2.47)

dengan tegangan tekuk kritis elastis,
$$F_e = \frac{\pi^2 E}{(\frac{Lc}{\tau})^2}$$
 (Mpa) (2.48)

f. Tekuk torsi dan tekuk torsi-lentur siku tunggal tanpa elemen langsing

Selain tekukk lentur, elemen batang tekan juga dapat mengalami tekuk lentur-torsi dan tekuk torsi. Pada SNI 1729:2020 Pasal E4 menjelaskan tentang komponen struktur simetris tunggal dan asimetris, serta komponen strukur simetris ganda yang panjang torsi tidak terkekang melebihi panjang lateral yang tidak terkekang dan pasal ini juga berlaku untuk siku tunggal.

$$b/t > 0.71 \sqrt{\frac{E}{F_v}}$$
 (2.49)

Dimana:

E = Elastisitas baja

 $F_v = Tegangan leleh (Mpa)$

b = Lebar kaki terpanjang

t = Tebal (mm)

Kuat tekan nominal P_n harus ditentukan berdasarkan kondisi batas dari tekuk torsi dan lentur sebagai berikut :

$$P_n = F_{cr} A_g \tag{2.50}$$

Tegangan kritis F_{cr} ditentukan berdasarkan persamaan :

1. Untuk profil struktur simetris ganda yang mengalami torsi dipusat geser :

$$F_{e} = \left(\frac{\pi^{2}EC_{w}}{L_{cz}^{2}} + GJ\right) \frac{1}{I_{x} + I_{y}}$$
 (2.51)

Untuk profil struktur simetris tunggal yang mengalami torsi dipusat geser dimana y merupakan sumbu simetris :

$$F_{e} = \left(\frac{F_{ey} + F_{ez}}{2H}\right) \left(1 - \sqrt{1 - \frac{4F_{ey}F_{ez}H}{(F_{ey} + F_{ez})^{2}}}\right)$$
(2.52)

3. Untuk profil struktur asimetris tunggal yang mengalami torsi dipusat geser :

$$(F_e - F_{ex})(F_e - F_{ey})(F_e - F_{ez}) - F_e^2(F_e - F_{ey})(\frac{x_0}{r_0}) - F_e^2(F_e - F_{ex})(\frac{y_0}{r_0})$$
(2.53)

2.9.4 Sambungan dan jenis-jenis alat sambungan

Pada kontruksi baja istilah sambungan bukanlah hal yang baru, setiap elemen strukturnya dihubungka satu sama lain dengan menggunakan alat penyambung. Biasanya pada struktur baja terdapat titik buhun atau tempat berkumpulnya batang-batang yang disambung menggunakan pelat penyambung atau pelat buhul. Sistem sambungan ternagi menjadi 3 bagian yaitu elemen yang disambung, jenis penyambung dan pelat penyambung. Dalam sambungan baja ada beberapa jenis alat penyambung yang banyak digunakan yaitu:

a. Sambungan baut

Sambungan baut merupakan jenis penegencang yang terdiri dari kepala baut pada salah satu sisinya dan memiliki ulir sebagai alur untuk mur mengencangkan sambungan baik dipasang secara manual maupun dengan mesin.

b. Sambungan paku keling

Sambungan tipe ini merupakan tipe pengencang mekani s yang sipasang secar a permanen. Sambungan ini memiliki kepala dikedua ujungnya dan sambungan ini tidak mudah kendur akibat getaran.

c. Sambungan las

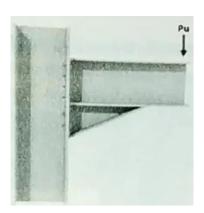
Sambungan ini menggunakan las sebagai penyambung elemen-elemennya. Sistem sambungan las disambung menggunakan bahan logam yang dipanasipada suhu yang tepat.

2.9.5 Jenis-jenis sambungan

Perencanaan sambungan ditentukan oleh bidang kerja sambungan, yaitu tempat bekerjanya gaya pada sistem sambungan. Adapun bidang kerja yang terdapat pada suatu sambungan yaitu:

a. Sejajar (dalam bidang atau sebidang)

Pembebanan dimana gaya dan momen lenturnya berada dalam bidang sambungan sehingga gaya yang timbul adalah gaya geser.

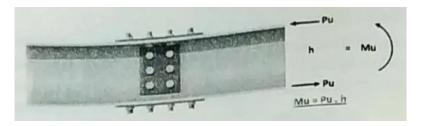


Gambar 2. 24 Sambungan sejajar

(Sumber: Arifi & Setyowulan, 2020)

b. Tegak lurus (luar bidang atau tak sebidang)

Pembebanan yang gaya atau momen lenturnya menghasilkan gaya yang arahnya yttegak lurus bisang sambungan sehingga gaya yang ditimbulkan dalam sambungan adalah gaya tarik .



Gambar 2. 25 Sambungan tegak lurus

(Sumber : Arifi & Setyowulan, 2020)

c. Kombinasi sejajar tegak-lurus

Pembebanan yang gaya atau momen lenturnya menghasilkan gaya yang arahnya sejajar dan tegak lurus bidang sambungan sehingga menghasilkan gaya kombinasi gaya geser dan tarik.

Gambar 2. 26 Sambungan kombinasi sejajar tegak-lurus

(Sumber : Arifi & Setyowulan, 2020)

2.9.6 Ukuran dan lubang baut

Beberapa jenis baut yang tercantum pada SNI 1729:2020 adalah ASTM A307, ASTM A354, ASTM 4A99, ASTM F3043, ASTM F3111, ASTM F3125/F3125M. Secara garis besar terdapat 2 mutu baut yaitu baut biasa yang terbiuat dari baja karbon rendah seperti 307 dan baut mutu tinggi seperti A325 dan A490. Namun berdasarkan SNI 1729:2020 baut mutu tinggi terbagi atas 2 yaitu grup A dan grup B.

Gambar 2. 27 Baut dengan mutu A325

(Sumber: Champion bolt and supply inc, 2019)

Gambar 2. 28 Baut dengan mutu A490

(Sumber: Champion bolt and supply inc, 2019)

Tabel 2. 13 Pratarik naut minimu (kN)

Ukuran Baut, mm	Kelompok A (misal, Baut A325M)	Kelompok B (misal, Baut A490M)
M16	91	114
M20	142	179
M22	176	221
M24	205	257
M27	267	334
M30	326	408
M36	475	595

[[]a] Sama dengan 0,70 dikalikan kekuatan tarik minimum baut, dibulatkan ke satuan kN terdekat, seperti dispesifikasikan ASTM F3125/F3125M untuk baut Grade A325M dan baut Grade A490M dengan ulir UNC.

(Sumber: SNI 1729, 2020)

Tabel 2. 14 Kekuatan nominal pengencang dan bagian yang berulir, ksi (Mpa)

Deskripsi Pengencang	Kekuatan Tarik Nominal, <i>F_{nt},</i> ksi (MPa) ^[a]	Kekuatan Geser Nominal pada Sambungan Tipe Tumpu, <i>F_{nv}</i> , ksi (MPa) ^[b]	
Baut A307	45 (310) ^[c]	27 (186) ^{[c][d]}	
Baut kelompok A (misal, A325), apabila ulir ada di bidang geser	90 (620)	54 (372)	
Baut kelompok A (misal, A325), apabila ulir di luar bidang geser	90 (620)	68 (469)	
Baut kelompok B (misal, A490), bila ulir ada di bidang geser	113 (780)	68 (469)	
Baut kelompok B (misal, A490), apabila ulir di luar bidang geser	113 (780)	84 (579)	
Rakitan baut group C (misal, F3043), apabila ulir dan daerah transisi batang bautada di bidang geser	150 (1.040)	90 (620)	
Rakitan baut group C (misal, F3043), apabila ulir dan daerah transisi batang baut di luar bidang geser	150 (1.040)	113 (779)	
Bagian berulir yang memenuhi persyaratan Pasal A3.4, apabila ulir ada di bidang geser	0,75 F _u	0,450 F _u	
Bagian berulir yang memenuhi persyaratan Pasal A3.4, apabila ulir di luar bidang geser	0,75 F _u	0,563 F _u	

(Sumber: SNI 1729, 2020)

Iol Untuk baut kekuatantinggi yang memikul beban fatik tarik, lihat Lampiran 3
 Iol Untuk ujung sambungan yang dibebani dengan panjang pola pengencang lebih besar dari 38 in. (950 mm), F_mharus direduksi sampai 83,3% dari nilai pada tabel. Panjang pola pengencang merupakan jarak maksimum sejajar dengan garis gaya antara sumbu baut yang menyambungkan dua bagian dengan satu permukaan faying.
 Iol Untuk baut A307, nilai yang ditabulasikan harus direduksi sebesar 1% untuk setiap 1/16 in. (2

mm) di atas 5 diameter dari panjang pada pegangantersebut.

[[]d] Ulir diperbolehkan pada bidang geser.

Adapun variasi lubang ukuran baut yang akan dijelaskan pada tabel berikut ini:

Tabel 2. 15 Dimensi lubang nominal, mm

	Dimensi Lubang			
Diameter Baut	Standar (Diameter)	Ukuran Berlebih (Diameter)	Standar (Diameter)	Slot Panjang (Lebar x Panjang)
M16	18	20	18 x 22	18 x 40
M20	22	24	22 x 26	22 x 50
M22	24	28	24 x 30	24 x 55
M24	27 ^[a]	30	27 x 32	27 x 60
M27	30	35	30 x 37	30 x 67
M30	33	38	33 x 40	33 x 75
≥ M36	d + 3	d + 8	(d + 3) x (d + 10)	$(d + 3) \times 2,5d$
[a] Diameter lubang ini memungkinkan penggunaandengan baut diameter 1 in.				

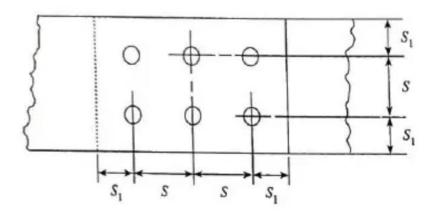
(Sumber: SNI 1729, 2020)

Jarak baut 2.9.7

Spasi minimum

Jarak antapusat baut (s) minimum ialah $s \ge 2,67 \, d$, dan jarak yang direkomendasikan ialah $s \cong 3$ d dengan jarak anrbaut atau slot $s \ge d$.

b. Jarak tepi minimum


Jarak baut ke tepi sambungan diarah gaya adalah tidak boleh kurang sesuai dengan Tabel 2.16

c. Spasi maksimum dan jarak tepi

Jarak maksimum dari pusat baut ke tepi sambungan $s \le 12$ t pelat yang disambung, tetapai harus ≤ 150 mm.

Untuk spasi minimum, maka:

- 1. Komponen struktur yang dicat atau tidak yang tidak mengalami korosi, $s \le 24$ t pelat tipis atau 300 m.
- 2. Komponen struktur yang tidak dicat yang terhubung dengan cuaca yang mengalami korosi, $s \le 14$ t pelat tertipis atau 180 mm.

Gambar 2. 29 Jarak dan spasi baut

(Sumber: Setiawan, 2013)

Tabel 2. 16 Jarak tepi minimum baut, mm

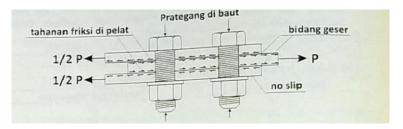
Diameter Baut (mm)	Jarak Tepi Minimum
16	22
20	26
22	28
24	30
27	34
30	38
36	46
Di atas 36	1,25 <i>d</i>

[[]a]Jika diperlukan, jarak tepi terkecil diperbolehkan asalkan ketentuan yang sesuai dari Pasal J3.10 dan J4 dipenuhi, tetapi jarak tepi yang kurang dari satu diameter baut tidak diperbolehkan tanpa persetujuan dari penanggungjawab perancangan.

DUntuk lubang ukuran berlebih atau lubang slot, lihat Tabel J3.5M.

(Sumber: SNI 1729, 2020)

2.9.8 Tipe sambungan dan kegagalan sambungan

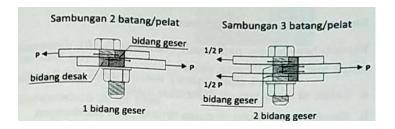

Pada sambungan baut terdapat 2 tipe sambungan, yaitu:

a. Sambungan tipe tumpu

Sambungan tipe tumpu merupakan sambungan yang dibuat dengan ,menggunakan baut yang dikencangkan dengan tangan atau baut mutu tinggii yang dikencangkan untuk menghasilkan gaya tarik yang disyaratkan dan kuat rencananya disalurkan oleh gaya geser pada baut dan tumpuan pada bagian yang disambungkan.

b. Sambungan slip kritis

Sambungan slip kritis merupakan sambungan yang dibuat dengan menggunakan baut mutu tinggi yang dikencangkan untuk menghasillkan tarikan baut minimum yang disyaratkan sedemikian rupa sehingga gaya-gaya geser rencana tersalurkan melalui jepitan yang bekerja pada bidang kontak dan gesekan yang ditimbulkan bidang kontak.



Gambar 2. 30 Mekanisme slip baut

(Sumber: Dewobroto, 2016)

Kegagalan sambungan pada elemen struktur baja dapat terjadi kapan saja, baik itu ketika baut sebagai penyambung mengalami kehgagalan ataupun pelat sebagai elemen yang disambung. Ada beberapa tipe kegagalan sambungan, yaitu:

a. Keruntuhan geser pada baut terjadi akibat gaya pada sambungan mengalami gaya geser yang bekerja tegak lurus terhadap sumbu baut.

Gambar 2. 31 Bidang geser pada sambungan baut

(Sumber : Arifi & Setyowulan, 2020)

b. Keruntuhan geser pada pelat

Selain baut, elemen oelat yang disambung juga dapat mengalami keruntuhan akibat gaya geser yang bekerja pada sambungan. Tipe keruntuhan ini terjadi deformasi pada pelat yang secara bertahap ditandai dengan adanya titik (*necking*) pada pelat yang mengalami leleh tarik lokal.

c. Keruntuhan tumpu pada baut

Keruntuhan tumpu baut direncanakan untuk memenuhi 2 batas, yaitu:

- 1. Leleh terjadi pada sambungan
- 2. Keruntuhan tumpu terjadi pada sambungan
- d. Keruntuhan tumpu pada pelat

Keruntuhan tumpu pada pelat juga dapat terjadi dimana hal ini dipengaruhi oleh jarak bersih antar baut, tebal pelat yang disambung dan tegangan tarik ultimate.

e. Keruntuhan geser blok

Keruntuhan geser blok pada sambungan terjadi karena robeknya pelat yang disambung akibat gay atarik yang bekerja pada sambungan.

2.9.9 Kekuatan baut

Berdasarkan SNI 1729:2020, sebuah baut yang memikul gaya terfaktor harus memenuhi syarat sebagai berikut:

$$R_{u} \le \emptyset R_{n} \tag{2.54}$$

Terdapat bebarapa jenis kekuatan nominal baut yang tergantung pada gaya yang bekerja dan tipe sambungan yang digunakan, yaitu :

a. Kekuatan geser baut

$$R_u = F_{nv.}A_b \tag{2.55}$$

b. Kekuatan tarik baut

$$R_n = F_{nt.} A_b \tag{2.56}$$

c. Kekuatan tumou dan sobek lubang baut

Untuk baut pada sambungan dengan lubang standar, ukuran berlebih dan slot pendek, tidak tergantung dari arah beban, atau lubang slot panjang dengan slot paralel terhadap arah gaya :

Tumpu

- Apabila deformasi dilubang baut pada beban layan adalah tinjauan desain :

$$R_n = 2.4 dt F_u$$
 (2.57)

Apabila deformasi dilubang baut pada beban layan adalah bukan tinjauan desain :

$$R_n = 3 dt F_u$$
 (2.58)

Sobek

- Apabila deformasi dilubang baut pada beban layan adalah tinjauan desain :

$$R_n = 1.2 \text{ lc t } F_u$$
 (2.59)

- Apabila deformasi dilubang baut pada beban layan adalah bukan tinjauan desain :

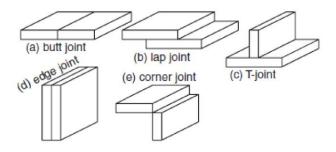
$$R_n = 1.5 \text{ lc t } F_u$$
 (2.60)

Untuk baut pada sambungan dengan lubang slot panjang dan slot tersebut tegak lurus terhadap arah gaya:

Tumpu

$$R_n = 2.0 dt F_u$$
 (2.61)

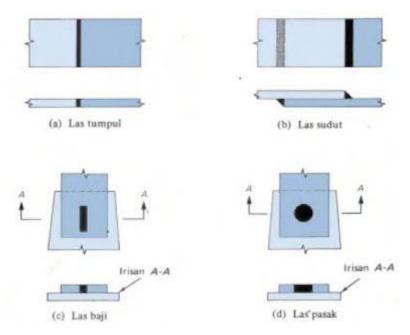
Sobek


$$R_n = 1.0 lc t F_u$$
 (2.62)

d. Baut kekuatan tinggi dalam sambungan slip kritis

$$R_n = \mu D_u \cdot h_f \cdot T_b \cdot n_s$$
 (2.63)

2.9.10 Jenis-jenis las dan sambungan las


Pada sambungan las terdapat 5 jenis yaitu sambungan sebidang (*but joint*), sambungan sudut (*corner joint*), sambungan lewatan (*lap joint*) sambungan tegak (*tee joint*), dan sambungan sisi (*edge joint*).

Gambar 2. 32 Jenis-jenis sambungan las

(Sumber: Patel, 2018)

Jenis-jenis las dibagi menjadi 4 yaitu las tumpul, las sudut, lasa baji, dan las pasak seperti yang terlihat pada gambar dibawah ini.

Gambar 2. 33 Jenis-jenis las

(Sumber : Soemardi, 2005)

2.9.11 Base plate

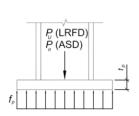
Pelat dasar adalah pelat yang terletak di antara kolom baja dan pondasi yang umumnya terbuat dari beton. Fungsi pelat dasar adalah meneruskan beban kolom ke pondasi untuk meratakan beban kolom yang ada. Pelat dasar dihubungkan dengan kolom baja melalui sambungan las, sedangkan pelat dasar, sebagai rancangan sambungan antara baja dengan pondasi beton yang memiliki 2 jenis perletakan yaitu:

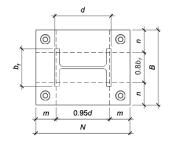
- Perletakan Sendi, dimana baut angkur tidak memikul momen hanya memikul beban tekan atau beban tarik
- 2. Perletakan Jepit, dimana sebagian baut angkur memikul tarik akibat momen sedangkan yang lainnya memikul tekan.

2.9.11.1 Beban aksial tekan konsentris (*Concentric compressive axial loads*)

Ketika dasar kolom hanya menahan aksial kolom dengan beban tekan, pelat dasar harus mampu untuk menahan gaya dukung yang

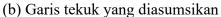
ditransfer dari pelat dasar dan pelat dasar harus memiliki ketebalan yang cukup untuk menahan beban yang bekerja. Kekuatan dukung desain pada beton dijelaskan pada ACI 318-02, bagian 10.17, dengan $\phi(0.85 \text{ f'c A1})$ jika permukaan penyangga tidak lebih besar dari pelat dasar. Tetapi apabila permukaan pendukung lebih besar daripada area yang dibebani, kekuatan dukung desain di atas diizinkan untuk dikalikan dengan $\sqrt{\frac{A_2}{A_1}} \leq 2$. Kekuatan dukung nominal (Pp) untuk kriteria desain menggunakan ASD dihitung berdasarkan persamaan dibawah ini.

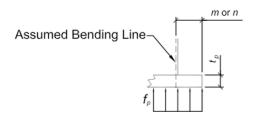

$$Pp = (0.85 \text{ fc } A_1) \left(\sqrt{\frac{A_2}{A_1}} \right) \le 1.7 \text{ fc } A_1$$
 (2.64)


Persamaan tersebut dikalikan dengan faktor resistan (ϕ) untuk LFRD dan dibagi dengan faktor kemanan (Ω) untuk ASD. Plat dasar dengan beban aksial , tegangan tumpuan yang ada dibawah tumpuan plat dasar akan diasumsikan terdistribusi secara seragam dan dapat ditekan seperti pada persamaan berikut.

$$f_{pu} = \frac{P_u}{BN} \text{ (LFRD)} \tag{2.65}$$

$$f_{pu} = \frac{P_u}{BN} \text{ (ASD)} \tag{2.66}$$


Tekanan yang menyebabkan pembengkokan pada pelat dasar dibagian kritis yang diasumsikan seperti yang ditunjukkan pada Gambar berikut.



(a) Tegangan yang

diasumsikan

(c) Penentuan momen desain pelat dasar

Gambar 2. 34 Desain base plate dengan beban aksial tekan

(Sumber: Fisher & Kloiber, 2006)

Kekuatan pelat dasar yang diperlukan ditentukan menggunakan persamaan berikut.

$$M_{\rm pl} = f_{\rm pa} \left(\frac{l^2}{2}\right) \quad (LFRD) \tag{2.67}$$

$$M_{pl} = f_{pu} \left(\frac{l^2}{2}\right) \quad (ASD) \tag{2.68}$$

Ketebalan minimum untuk batas leleh pada *base plate* dapat ditentukan dengan persamaan dibawah ini.

$$t_{\min} = 1 \sqrt{\frac{2P_a}{\phi f_y BN}} \text{ (LFRD)}$$
 (2.69)

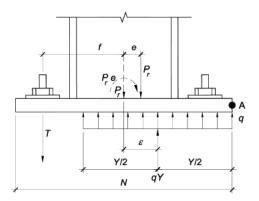
$$t_{\min} = 1 \sqrt{\frac{2\Omega P_{u}}{\phi f_{y} BN}}$$
 (ASD) (2.70)

Dimana:

Pp = Kuat dukung nominal plat dasar

Pu = Gaya aksial tekan (LFRD)

Pa = Gaya aksial tekan (ASD)


 ϕ = Faktor resitan (LFRD)

 Ω = Faktor keamanan (ASD)

 t_{min} = tebal plat dasar

2.9.11.2 Desain plat dasar dengan gaya momen kecil (*Design* of column base plate with small moments)

Pelat dasar dengan nilai eksentrisitas kecil, gaya aksial yang bekerja ditahan oleh plat dasarnya saja. Tetapi untuk plat dasar dengan nilai eksentrisitas besar, hanya menggunakan pelat dasar tidak akan dapat menahan gaya yang bekerja. Pada kasus ini diperlukan angkur untuk mendukung pelat dasar dalam menenrima beban.

Gambar 2. 35 Desain pelat dasar dengan momen kecil

(Sumber: Fisher dan Kloiber, 2006)

Sebuah pelat dasar dikatakan menerima eksentrisitas kecil dapat dibuktikan apabila nilai e lebih kecil dari nilai e_{kritis} . Untuk menghitung nilai e dan nilai e_{kritis} digunakan persamaan sebagai berikut.

$$e = \frac{M_r}{P_r} \tag{2.71}$$

$$e_{kritis} = \frac{N}{2} - \frac{P_r}{2q_{max}}$$
 (2.72)

Berikut merupakan persamaan untuk menghitung kuat lentur nominal per satuan lebar pelat.

$$\phi_b R_n = \phi_b f_v \frac{t_p^2}{4} \quad (LFRD) \tag{2.72}$$

$$\frac{\mathrm{Rn}}{\Omega} = \phi_{\mathrm{b}} f_{\mathrm{v}} \frac{f_{\mathrm{y}}}{\Omega} \frac{t_{\mathrm{p}}^{2}}{4} \quad (\mathrm{ASD}) \tag{2.73}$$

Untuk menentukan ketebalan pelat dasar dengan momen kecil dapat digunakan persamaan sebagai berikut.

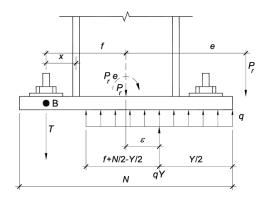
Untuk Y≥ m, maka

$$t_{p(req)} = \sqrt{\frac{4(f_p \frac{m^2}{2})}{f_y}} = 1.5 m \frac{f_p}{f_y} \quad (LFRD)$$
 (2.71)

$$t_{p(req)} = \sqrt{\frac{4(f_p \frac{m^2}{2})}{f_y/1,67}} = 1,83 \text{m} \frac{f_p}{f_y} \text{ (ASD)}$$
 (2.72)

Untuk Y<m, maka

$$t_{p(req)} = 2.11 \sqrt{\frac{f_p Y(m - \frac{Y}{2})}{f_y}}$$
 (LFRD)


$$t_{p(req)} = 2.58 \sqrt{\frac{f_p Y(m - \frac{Y}{2})}{f_y}}$$
 (ASD)

Dimana:

 $t_{p(req)} = Tebal minimumm pelat$

2.9.11.3 Desain plat dasar dengan gaya momen besar (*Design* of column base plate with large moments)

Ketika momen besar yang terjadi pada beban aksial kolom, diperlukan angkur untuk enghubungkan pelat dasar ke pondasi beton agar plat dasar tidak miring atau mengalami . Hal ini biasanya terjadi padadrangka kaku yang didesain untuk menahan beban gempa lateral atau angin. Desain pelat dasar dengan momen besar dapat dilihat pada gambar dibawah.

Gambar 2. 36 Desain pelat dasar dengan momen besar

(Sumber: Fisher dan Kloiber, 2006)

Dalam menyatakan bawha sebuah pelat dasar menerima eksentrisitas kecil dapat dipastikan dengan nilai e lebih besar dari pada e_{kritis} . Untuk menghitung nilai e dan nilai e_{kritis} , maka digunakan persamaan berikut :

$$e = M_r/P_r (2.75)$$

$$e_{kritis} = \frac{N}{2} - \frac{P_r}{2q_{max}} \tag{2.76}$$

Pelat dasar yang diirencanakan adalah pelat dengan dimensi asumsi, dimana pelat dasar tersebut akan dikontrol setelah adanya nilai beban. Pelat dasar dapat dikontrol dengan menggunakan persamaan berikut ini.

$$\left(f + \frac{L}{2}\right)^2 > \frac{1P_u(e+f)}{q_{max}} \tag{2.77}$$

Untuk menghitung tebal pelat (t_p) yang dibutuhkan, dapat dihitung dengan persamaan berikut :

$$Y = f + \frac{L}{2} \pm \sqrt{f + \frac{L}{2} - \frac{2P_u (e+f)}{q_{max}}}$$
 (2.78)

Untuk $Y \ge m$, maka

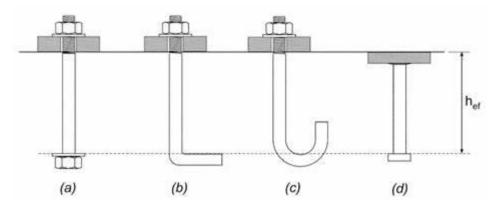
$$t_{p(req)} = 1.5 \text{m} \sqrt{\frac{f_p(\text{max})}{f_y}} \text{ (LFRD)}$$
 (2.79)

$$t_{p(req)} = 1.83 \text{m} \sqrt{\frac{f_p(max)}{f_y}} \text{ (ASD)}$$
 (2.80)

Untuk Y<m, maka

$$t_{p(req)} = 2.11 \sqrt{\frac{f_{p(max)}Y(m-\frac{Y}{2})}{f_y}}$$
 (LFRD)

$$t_{p(req)} = 2.58 \sqrt{\frac{f_{p(max)}Y(m-\frac{Y}{2})}{f_y}}$$
 (ASD)


Dimana:

 $t_{p(req)}$ = Tebal minimumm pelat

2.9.12 Pengangkuran

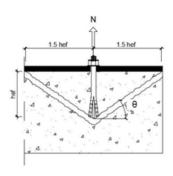
Sistem pengangkuran berlaku pada semua *baseplate*, karena angkur pada akan menjaganya tetap pada tumpuan dan mencegah kegagalan pada *baseplate baseplate*. Angkur berfungsi untuk mengikat konstruksi baja dengan beton (pondasi), tanpa menggunakan angkur kontruksi rangka tidak dapat menyatu dengan struktur lainnya.

Berdasarkan laman chemical anchor indonesia, angkur terbagi menjadi 2 jenis bedasarkan pemasangannya yaitu chemical anchor dan mechanical anchor. chemical anchor merupakan pemasangan angkur dengan bantuan zat kimia yang berfungsi untuk menambah daya rekat sehingga angkut lebih kuat dalam menahan beban. Sedangkan mechanical anchor merupakan pemasangan angkur yang tidak menggunakan zat kimia sebagai perekatnya, namun daya rekat angkur berasal dari kekuatan material yang digunakan untuk menempel. Metode chemical anchor biasanya dipakai dalam pemasangan baja wide flange (WF) dan H-Beam untuk pemabngunan kontruksi baja, baik itu berupa kolom, balok dan elemen struktur lainnya. Dari segi sistem pemasangan, angkur terbagi atas 2 yaitu *cast in place* dan post installed. Dimana cast in place merupakan angkur yang ditanam dalam beton sebelum beton dicor, dalam hal ini angkur yang terpasang tidak dapat dipindahkan lagi karena telah tertanam permanen pada beton yang mengeras. Sedangkan post installed merupakan angkur yang dipasang setelah beton mengeras, hal ini memungkinkan angkur masih dapat dipindahkan karena sistem angkur terpasang pasca cor (SNI 2847-2019). Gambar Jenis-jenis angkur pada sistem pemasangan cast in place dan post installed dapat dilihat pada gambar berikut.

Gambar 2. 37 Jenis-jenis angkur berdasarkan sistem pemasangan cast in place

(Sumber: Dewobroto, 2015)

Dimana pada gambar diatas jenis-jenis bautnya adalah:


- a. Baut segienam dan ring
- b. Baut-L
- c. Baut-J
- d. Stud

2.9.12.1 Perilaku kegagalan angkur terhadap beban tarik

Kegagalan dapat terjadi apabila angkur diberikan beban tarik. Kegagalan dapat terjadi pada beton maupun material angkurnya.

1. Kegagalan jebol pada beton (concrete breakout)

Kegagalan jebol pada beton (*concrete breakout*) bisa terjadi apabila kedalaman pemasangan angkur relatif kecil (pendek), proses mencabut angkur akan menyebabkan pengembangan permukaan sehingga terjadi kegagalan disekitar angkur dalam bentuk kerucut dengan sudut 35°.

Gambar 2. 38 Kegagalan concrete breakout

(Sumber: Kresiariati, 2022)

Kuat jebol beton terhadap tarik dapat dihitung berdasarkan persamaan berikut.

$$N_{cb} = \frac{A_{nc}}{A_{nco}} \times y_{ed} N \times y_{c} N \times y_{p} N \times y_{nb} N$$
 (2.83)

Dimana jika:

- Angkur dengan $c_a < 1$, $5h_{ef}$, maka

$$A_{nc} = (2 \times 1, 5h_{ef}) \times (c_a + 1, 5h_{ef})$$

- Angkur dengan $c_a > 1$, $5h_{ef}$, maka

$$A_{nc} = A_{nco} = 1.0$$

- Luas proyeksi maksimum kerusakan A_{nco}, maka

$$A_{nco} = (2 \times 1, 5h_{ef}) \times (2 \times 1, 5h_{ef}) = h_{cf^2}$$

- Faktor modifikasi $y_{ed}N$ jika $c_a \ge 1, 5h_{ef}$, maka

$$y_{ed}N = 1.0$$

- Faktor modifikasi $y_{ed}N$ jika $c_a < 1, 5h_{ef}$, maka

$$y_{ed}N = 0.7 + 0.3 \frac{c_a}{1.5} h_{cf}$$

- Faktor modifikasi y_cN untuk angkur cor ditempat bernilai 1,25
- Faktor modifikasi y_cN untuk angkur pasca cor bernilai 1,4
- Kuat dasar jebol beton N_b

$$N_b = k_c \times l_a \sqrt{f'c} \times h_{cf^{1,5}}$$

- Nilai k_c untuk angkur dengan tipe cor ditempat adalah 1,0

Dimana:

 N_{cb} = Kuat jebol nominal

A_{nco} = Luas proyeksi maksimum kerusakan angkur

 $y_{ed}N$ = Faktor modikasi untuk memeprhitungkan pengaruh angkur dibagian pinggir pondasi

 $y_c N = Faktor modifikasi untuk menigkatkan kuat tarik$

 $N_b = Kuat dasar jebol beton angkur terhadap tarik pada kondisi br
ton retak$

2. Kegagalan angkur cabut (*Pull-out failure*)

Kegagalan ini terjadi pada pengangkuran yang menyebabkan angkur tercabut ke atas dan tidak diikuti oleh materal betonnya. Beban tarik yang bekerja pada angkur menyebabkan sistem *interlock* tidak dapat menahan beban tarik.

Dalam Building code requirements for structural concrete dari American Concrete Institut (ACI) dan beberapa standart lainnya tidak memodelkan kapasitas *Pull-out failure* rencanan sehingga kegagalan ini diasumsikan menggunakan pendekatan bond slip (angkur kehilangan lekatan) pada tulangan ulir.

Kuat cabut angkur terhadap tarik dapat dihitung menggunkan persamaan berikut ini.

$$R_n / \phi = (A_{angkur} \times f_{nt})/\phi \tag{2.84}$$

Dimana:

 R_n = Kuat nominal angkur

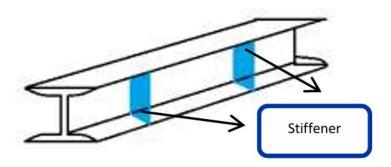
 $f_{nt} = Tegangan tarik angkur$

 ϕ = Faktor reduksikuat angkur terhadap tarik

Kuat cabut angkur dari beton dapat dihitung berdasarkan persamaan berikut.

$$R_{n} / \phi = (8 \times A \times f c \times y_{cD} N) / \phi$$
 (2.85)

 R_n = Kuat cabut nominal


f'c = Kuat tekan beton

A = luas tumpu netto dari angkur kepala segienam

 $y_{cp}N$ = Faktor modifikasi angkur pada daerah yang secara analisis belum timbull retak pada kondisi beban kerja. Nilai faktor jika terjadi retak dalah 1,0.

2.9.13 Stiffener (pengaku)

Stiffener merupakan bantalan atau pelat pengaku yang digunakan pada titik tumpuan balok ketika badan balok tidak mampu menahan beban terpusat. Kondisi batas yang terjadi adalah leleh likal pada web dan tekuk lokal web (Olivia Maria, 2016).

Gambar 2. 39 Stiffner pada badan balok baja WF

(Sumber: Maria, 2016)

Kegagalan yang terjadi pada baja adalah kegagalan tekuk (*buckling*). Tekuk terjadi karena gaya aksial atau gaya yang bekerja pada sumbu utama penampang struktur, tekuk pada abaja terbagi menjadi 2 jenis yaitu tekuk lokal dan tekuk global. Tekuk biasanya terjadi pada profil baja yang memiliki kelangsingan , untuk mencegah terjadinya tekuk lokal pada daerah tekan akibat gaya lateral, maka perlu direncanakan stfinnener yang dapat mencegah tekuk lokal pada badan profil (*web*) akibat gaya geser dan mencegah tekuk lokal padasayap profil (*flage*).

Dalam perencanaan *stiffener* harus ditinjau dari kebutuhan profil. Apabila $R_u > \varphi \times R_b$ maka perlu dipasang *stiffener*. Untuk mengontrol kapasitas *stiffener* digunakan persamaan sebagai berikut.

- Lebar stiffener
$$(b_s)$$

$$b_s > \frac{b_f}{3} - \frac{t_w}{2}$$
(2.86)

- Tebal stiffener (t_f)

$$t_f > \frac{t_f}{2}$$
 dan harus memenuhi $\frac{b_s}{t_s} \le 0.56 \sqrt{\frac{E}{f_y}}$ (2.87)

- Luas minimum (A_s)

$$A_{s} \ge 0.5 \times D \times A_{w} \times (1 + c_{v}) \times \left(\frac{a}{h} - \frac{\left(\frac{a}{h}\right)^{2}}{\sqrt{1 + \left(\frac{a}{h}\right)^{2}}}\right)$$

$$(2.88)$$

2.10 Pondasi

2.10.1 Pengertian pondasi

Fondasi adalah bangunan yang sangat menetukan kuatnya struktur nya, baik struktur atas maupun struktur bawah. Struktur bawah merupakan bagian bangunan yang letaknya dibawah permukaan tanah dan biasa disebut sebagai pondasi. Pondasi berfungsi untuk meneruskan beban struktur atasdan berat pondasi itu sendiri ke lapisan tanah yang ada dibawahnya tanpa diikuti dengan keruntuhan (Surendro, 2020).

2.10.2 Jenis-jenis pondasi

Secara umum fondasi terbagi atas 2 macam yaitu pondasi dangkal dan pondasi dalam. Penentuan jenis pondasi yang akan digunakan ditentukan berdasarkan keadaaan perbandingan anatara kedalaman fondasi (D) dan lebar pondasi (B), sebagai berikut :

- a. Pondasi dangkal jika D/B < 1
- b. Pondasi dalam jika D/B > 4-5

Penentuan tipe pondasi dirancang berdasarkan kondisi tanah yang ada diarea lokasi pembangunan, ada dua jenis pondasi yang dapat digunakana, yaitu:

1. Pondasi dangkal

Jika kedalaman tanah keras terletakdekat dari permukaan tanah adalah < - 3m maka pondasiyang dapat digunakan adalah :

- a. Pondasi persegi/bujur sangkar atau persegi panjang (spread footing)
- b. Pondasi lajur (strip footing)
- c. Pondasi umpak (trapesium footing)
- d. Pondasi raft (plat penuh)
- e. Pondasi block (kaison, sumuran atau blok dengan angker)
- f. Pondasi persegi/bujur sangkar yang diperbesar (enlarge pad atau enlarge spread footing)

2. Pondasi dalam

Jika kedalaman tanah keras terletak jauh dari permukaan tanah yaitu > -3m, maka pondasi yang dapat digunakan adalah

- a. Pondasi tiang pancang
- b. Pondasi tiang bor
- c. Pondasi tiang strauss dan sebagainya

Istilah tanah keras dapat diasumsikan memiliki kriteria sebagai berikut :

- 1. Secara visual tidak terurai, masif, berbentuk batuan, tidak bisa dipecah dengan manual tapi harus dengan ripper atau blasting.
- 2. Mempunyai tekanan konus qc \geq 200 kg/cm2 (uji DCPT/sondir) dan atau nilai N-SPT \geq 50.

2.11 Rencana Anggaran Biaya

John W. Niron dalam bukunya Pedoman Praktis Anggaran dan Borongan Rencana anggaran biaya bangunan (1992), rencana perhitungan biaya anggaran memiliki defenisi sebagai berikut :

- 1. Rencana : Sekumpulan rencana yang meliputi rincian dan rencana pelaksanaan pembangunan suatu bangunan
- 2. Aggaran : Perhitungan biaya berdasarkan gambar bestek
- 3. Biaya : Jumlah pengeluaran yang dikeluarkan yang berhubungan dengan borongan dimana hal tersebut sesuai dengan persyaratan yang sudah ada

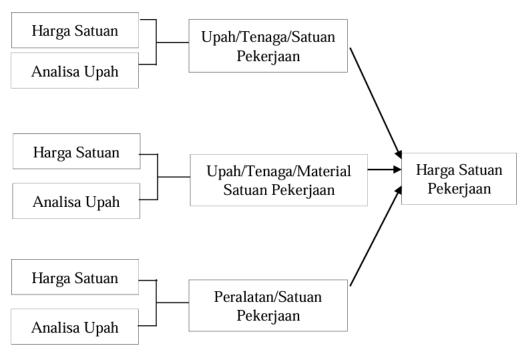
Perhitungan anggaran biaya ini bertujuan untuk menentukan besarnya biaya yang diperlukan, untuk mengendalikan pengeluaran per pekerjaan yang akan dilaksanakan, untuk menghindari penundaan atau penghentian pekerjaan dan untuk meminimalkan pemborosan biaya yang terjadi selama pelaksanaan pekerjaan. Perhitungan rencana anggaran biaya dilakukan berdasarkan gambar rencana, spesifikasi yang telah ditentukan, upah dan harga bahan dan alat.

Adapun komponen penyusun Rencana Anggaran Biaya:

- 1. Biaya Langsung
- a. Kebutuhan Material (Unsur Bahan) Kebutuhan material meliputi semua komponen pokok dan komponen penunjang dari material yang digunakan,

mengingat kedua komponen tersebut akan berpengaruh cukup besar pada biaya. Hal yang harus diperhitungkan dalam kebutuhan material yaitu:

- 1) Tercecer pada saat mengangkut
- 2) Untuk struktur sambungan
- 3) Rusak dan cacat
- 4) Susut oleh sebab lain
- 5) Struktur penunjang sementara
- 6) Kebutuhan Tenaga Kerja (Unsur Upah)
- 7) Biaya Peralatan
- b. Biaya Tak Langsung Penetapan biaya tenaga kerja merupakan komponen yang paling sulit dari analisis Rencana Anggaran Biaya. Hal ini disebabkan adanya beberapa faktor yang mempengaruhi, yaitu:
 - 1) Kondisi tempat kerja
 - 2) Keterampilan
 - 3) Lama waktu kerja
 - 4) Persaingan tenaga kerja
 - 5) Indeks biaya hidup
- c. Kebutuhan Peralatan Kebutuhan peralatan meliputi antara lain:
 - 1) Pembelian dan sewa alat
 - 2) Mobilisasi dan demobilisasi
 - 3) Transportasi
 - 4) Memasang dan membongkar
 - 5) Pengoperasian selama konstruksi berlangsung
- 2. Biaya Tak Langsung
 - a. Biaya Umum Biaya umum terdiri dari:
 - 1) Gaji pekerja tetap
 - 2) Sewa kantor
 - 3) Akomodasi perjalanan
 - 4) Dokumentasi
 - 5) Bunga bank
 - 6) Peralatan kecil dan habis pakai
 - b. Biaya Proyek Biaya proyek terdiri dari:


- 1) Keamanan dan keselamatan kerja
- 2) Asuransi
- 3) Pajak
- 4) Surat ijin
- 5) Pengujian dan pengetesan

Pada buku Rencana dan *Estimate Real of Cost* (H. Bachtiar Ibrahim, 1993) dijelaskan bahwa anggaran biaya suatu bangunan atau proyek merupakan hitungan banyaknya biaya yang dibutuhkan untuk bahan, upah tenaga kerja berdasarkan analisis yang telah dilakukan dan biaya-biaya lainnya yang berhubungan dengan pelaksanaan proyek konstruksi tersebut. Biaya anggaran merupakan jumlah dari masing-masing hasil perkalian volume dengan harga satuan pekerjaan (HSP) yang berhubungan dengan proyek. Maka dapat disimpulkan untuk mencari rencana anggaran biaya dalam suatu proyek adalah sebagai berikut :

$$RAB = \sum (Volume \times Harga satuan pekerjaan)$$
 (2.89)

2.11.1 Analisa Harga Satuan Pekerjaan

Analisis harga satuan pekerjaan adalah suatu cara menghitung harga satuan pekerjaan pekerjaan konstruksi berupa perkalian kebutuhan bahan, upah peralatan dengan harga bahan konstruksi yang digunakan, standar pekerja dan harga sewa/pembelian alat yang akan dipakai untuk menyelesaikan pekerjaan per satuan. Analisis harga satuan tenaga kerja dipengaruhi oleh angka koefisien yang menunjukkan nilai satuan alat dan upah tenaga kerja yang dapat dijadikan acuan untuk merencanakan atau mengendalikan biaya pekerjaan. Dalam analisis BOW ditetapkan angak (indek) jumlah tenaga pekerja dan bahan atau material bangunan untuk per satuan pekerjaan, berikut merupakan skema harga satuan pekerjaan:

Gambar 2. 40 Skema Harga Satuan Pekerjaan (HSP)

(Sumber: Ibrahim, 1993)

a. Analisis harga satuan bahan/material

Harga satuan bahan adalah harga satuan dari bahan atau material bangunan yang ada dipasaran pada saat anggaran biaya tersebut dibuat. Koefisien bahan merupakan koefisien yang menunjukkan keperluan bahan atau material bangunan untuk setiap jenis pekerjaan.

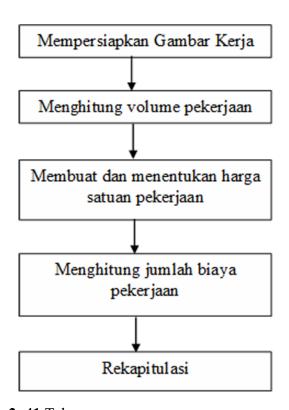
$$\sum_{\text{Bahan}}$$
 = Harga satuan bahan ×Koefisien analisa bahan (2.90)

b. Analisis harga satuan upah pekerja

Harga satuan upah pekerja adalah kebutuhan tenaga kerja (SDM) dan biaya untuk menyelesaikan pekerjaan tersebut per satuan pekerjaan. Koefisien upah pekerja merupakan keutuhan tenaga kerja untuk setiap posisi/ penepatan kerja.

$$\sum_{\text{Upah}} = \text{Harga satuan upah} \times \text{Koefisien analisa upah}$$
 (2.91)

c. Analisis harga satuan alat


Harga satuan alat adalah perhitungan banyaknya alat yang digunakan dan besarnya biaya sewa alat untuk menyelesaikan per satuan pekerjaan. Koefisien alat merupakan kebutuhan alat untuk setiap item pekerjaan.

 $\Sigma_{
m Alat}$ =Harga satuan alat×Koefisien analisa alat (2.92) Maka untuk menghitung harga satuan pekerjaan (HSP) digunakan rumus sebagai berikut :

$$HSP = Bahan + Upah + Alat$$
 (2.93)

2.11.2 Tahapan penyusunan rencana anggaran biaya

Berdasarkan buku Manajemen Proyek Konstruksi yang disusun oleh Mahyuddin tahun 2023 penyusunan rencana anggaran biaya terbagi menjadi dua tahap yaitu tahap persiapan dan tahap penyusunan rencana anggaran biaya, dimana tahapan dalam perencanaan anggaran biaya dapat dilihat pada gambar berikut.

Gambar 2. 41 Tahapan penyusunan rencanan anggaran biaya

(Sumber: Mahyuddin dkk, 2023)

2.12 Bahaya dan Pengendalian Resiko Kecelakaan Kerja

2.12.1 Bahaya

Bahaya berarti segala sesuatu termasuk situasi, tindakan yang mungkin menyebabkan kecelakaan atau kerugian pada orang, kerusakan atau gangguan lainnya. Oleh karena adanya suatu bahaya, maka diperlukan upaya pengendalian agar bahaya tersebut tidak menimbulkan akibat yang merugikan (Ramli, 2010). Mengidentifikasi bahaya berarti memperjelas dan mengendalikan bahaya dan risiko yang terkait dengan kegiatan operasional dan produksi setiap perusahaan, baik kegiatan rutin maupun non-rutin.

2.11.2Sumber Bahaya

Pada umumnya di semua tempat kerja selalu terdapat sumber bahaya yang dapat mengancam kesehatan dan keselamatan pekerja. Syukri Sahab (1997) mengatakan bahwa kecelakaan dan penyakit akibat kerja bisa terjadi karena adanya sumber bahaya dilingkungan kerja tersebut yang membahayakan pekerja. Dimana sumber bahaya yang dimaksudkan berasal dari:

1. Bangunan, peralatan, dan instalasi

Bangunan, peralatan, dan instalasi dapat menimbulakan bahaya bagi pekerja maupun manusia disekitarnya. Bahaya yang ditimbulkan bisa berasal dari bangunan yang kurang kokoh atau tidak memenuhi persyaratan yang sesuai standart. Desain ruang dan tempat kerja serta ventilasi yang baik juga harus diperhatikan guna untuk mencegah adanya sumber bahaya.

2. Bahan

Bahaya yang berasal dari bahan memiliki risiko berdasarkan sifat bahan tersebut yaitu :

- a. Mudah terbakar
- b. Mudah meledak
- c. Menimulkan alergi atau iritasi
- d. Bersifat racun
- e. Radioaktif
- f. Menimnulkan kerusakan pada kulit dan jaringan tubuh
- g. Mengakibatkan kelainan pada janin

h. Menyebabkan kanker

3. Proses

Proses dapat menimbulkan bahaya yang bermacam-macam tergantung dari teknologi yang digunakan. Dalam proses pada industri ada proses yang sederhana namun ada juga proses yang rumit. Dalam proses biasanya menggunakan suhu atau tekanan yang tinggi yang menyebabkan timbulnya resiko bahaya. Darii proses ini biasanya akan timul asap, hawa panas, kebisingan, dan bahaya mekanis seperti terjepit atau tertimpa material atau bahan. Hal ini lah yang mengharuskan kita harus berhati-hati dan teliti saat bekerja.

4. Cara kerja

Bahaya dapat berasal dari cara kerja yang dilakukan oleh pekerja, dimana cara kerja yang kurang tepat dapat membahayakan pekerja maupun manusia disekitarnya, bahaya yang dimaksud dapat terjadi karena:

- a. Cara mengangkat atau mengangkut, jika dilakukan dengan cara yang salah atau kurang tepat maka dapat menyebabkan cidera pada tulang punggung.
- b. Cra kerja yang menyebabkan banyak debu berhamburan atau serbuk logam, petcikan api dan tumpahan bahan berbahaya.
- c. Tidak memakai alat pelindung diri sesuai dengan standart keselamatan, atau memakai APD tidak sesuai dengan kebutuhan.

5. Lingkungan/tempat kerja

Lingkungan/tempat kerja juga dapat menimbulkan bahaya, berdasarkan permenaker No. PER. 05/MEN/1996 pasal 1 tentang SMK3 mengatakan bahwa tempat kerja merupakan lapangan atau ruangan, tertutup atau terbuka, bergerak atau tetap, dimana pekerja bekerja, atau tempat yang sering dimasuki oleh pekerja untuk kepentingan suatu usaha. Dimana

2.12.3Resiko Kecelakaan Kerja

Kecelakaan kerja adalah kejadian yang tidak diinginkan yang terjadi secara tiba-tiba dan menimbulkan kerugian materiil, kerugian atau bahkan korban jiwa. Lingkungan kerja yang berbahaya dan kesalahan manusia adalah asal muasal kecelakaan kerja (Tarwaka, 2012). Banyak faktor yang memengaruhi terjadinya

kecelakaan kerja. Notoatmodjo (2003) mengatakan bahwa kecelakaan kerja terjadi karena ulah pekerja itu sendiri, seperti kurangnya keterampilan, kelelahan akibat jam kerja yang berlebihan, kesalahan rekrutmen pekerja dan pengawasan yang kurang memadai. Kecelakaan kerja juga terjadi karena lingkungan kerja yang tidak memenuhi standar, perlengkapan peralatan yang digunakan selama bekerja, alat pelindung diri Ketidaktersediaan pribadi, tingkat pengetahuan tentang K3 yang kurang dan pedoman operasional baku yang minim.

2.13 Penelitian Terdahulu

Berikut merupakan beberapa penelitian terdahulu yang berkaitan dengan penelitian ini yang dapat dilihat pada Tabel 4.1:

Tabel 4. 1Penelitian terdahulu

No.	Nama dan Tahun Publikasi		Hasil Penelitian	
1.	Decky 2019	Edianto,	Judul: Perencanaan elevator barang untuk proyek pembangunan gedung 13 lantai dengan kapasitas angkut maksimum	
Me			Metode : Kuantitatif	
			Hasil: Dari perencanaan elevator barang untuk proyek pembangunan gedung 13 lantai dengan kapasitas angkat maksimum dapat disimpulkan bahwa motor listrik yang digunakan adalah 23,53 kw dan 32 HP. Dengan putaran motor (n) 1500 rpm dan Induksi motor listrik AC 3 phase 380 V. Untuk tali kawat yang digunakan adalah tali kawat baja dengan diameter 20,00 mm. Diameter serabut kawat (δ) 0,98 mm dan Tipe tali kawat yang digunakan 6 × 37. Drum pengangkat berdiamter 530 mm, Panjang keseluruhan drum (L) 1060,00 mm dan tebal dinding drum (W0 20,6 mm. Pulley pengakat berdiameter 540 mm. Poros drum penggerak berdiameter 130 mm. Pasak pada poros drum penggerak, Lebar pasak (b) 32 mm, tebal pasak (h) 18 mm, kedalaman alur pada poros (t1) 11 mm, dan kedalaman alur pada hub (t2) 7,4 mm. Rem blok ganda Momen gaya poros pada motor (M) 1527,89 kg cm. Diameter poros roda gigi cacing (d21) 90,00 mm. Poros cacing (d22) 40.00 mm, modul normal	

(mn) 35,11 mm, diameter lingkaran Tinggi kepala cacing (hk) 13,11 mm, tinggi kaki gigi cacing (hf) 40,62 mm. Kelonggaran puncak (c) 5,51 mm. Tinggi gigi (H) 75,73 mm, diameter luar cacing (dk1) 272,39 mm, diameter kaki cacing (dr1) 120,93 mm, diameter kepala roda cacing (dr) 526,60 mm dan diameter kaki roda cacing (dr2) 357,15 mm. untuk diameter Poros pulley pendukung diameter poros (ds) 150 mm. Pegas untuk buffer kabin dengan diameter pegas (D) 300 mm, diameter kawat pegas (d) 30 mm. Pegas untuk buffer bobot imbang berdiametr 300mm dam diameter kawat pegas 30 mm.

Yanuar Eka Wijaya,
 Eng Rachmat
 Firdaus, 2024

Judul : Perencanaan *Lift* Barang Kapasitas 600 Kg dengan Variabel Tali Baja (Steel Wire Rope) Tunggal

Metode: Deskriptif analisis dengan pendekatan kuantitatif

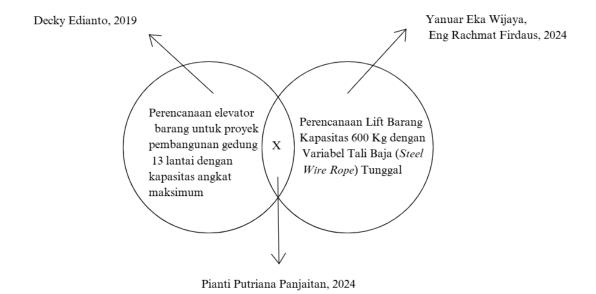
Hasil: Dari hasil analisis data yang telah dilakukan didapatkan umur tali baja dengan tipe yang berbeda 600Kg, dengan tipe tali 6x7, 6x19, 6x37 dan 6x61 maka dihasilkan kesimpulan bahwa, untuk tali baja dengan tipe 6x19 dengan beban 600 kg yang memiliki tegangan sebesar 401 N/mm2 dengan jarak waktu umur yaitu 17 bulan dengan perlakuan kerja relatif ringan. Untuk tali Baja dengan tipe 6x7 dengan beban 600kg didapati tegangan sebesar 350 N/mm2 dan umur yang didapat 15 bulan digunakan untuk jenis pekerjaan ringan. Untuk tali baja dengan tipe 6x37 dengan beban 600 kg yang memiliki tegangan sebesar 333 N/mm2 dengan jarak waktu umur yaitu 17 bulan dengan perlakuan kerja relatif ringan. Untuk tali baja dengan tipe 6x61 dengan beban 600kg didapati tegangan sebesar 327 N/mm2 dan umur yang didapat 34 bulan dengan perlakuan kerja relatif ringan.

3. Totok Suwanda1, Sudarisman, Ajis Kurniawan, Nur Ardiyansyah, 2023 **Judul**: Pembuatan *Lift* Barang Untuk Rumah Dua Lantai

Metode: Studi Literatur

Hasil: Hasil pembuatan *lift* barang memiliki dimensi tinggi 6 meter, panjang 0,8 meter dan lebar 0,8 meter, sedangkan sangkar mempunyai dimensi tinggi 1,5 meter panjang 0,74 meter dan lebar 0,74 meter dengan berat 78,63 Kg. Penggerak yang digunakan adalah Electric hoist MOLLAR 1200 kg dengan spesifikasi V/HZ/W: 220v/50HZ/1800W, dalam menarik dan menurunkan Motor penggerak

menggunakan tali baja (wirerope) 6 mm yang melingkar pada puli mesin (sheave) dengan kecepatan dari motor penggerak adalah 10 m/s. Proses pembuatan dibagi menjadi 3 bagian, yaitu Pembuatan rangka utama, Pembuatan sangkar dan pembuatan tempat elektrikal hoist. Proses pembuatan membutuhkan waktu 2 bulan dengan rincian total biaya meliputi biaya bahan, pekerja dan mesin yang berjumlah Rp 21.276.000,00.


4. Asep Risdiyan

Judul: Aanalisi kekuatan tali baja pada elevator barang dengan kapasitas angkat *hoist* 3 ton

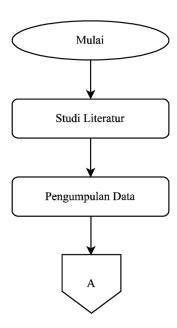
Metode: Kuantitatif

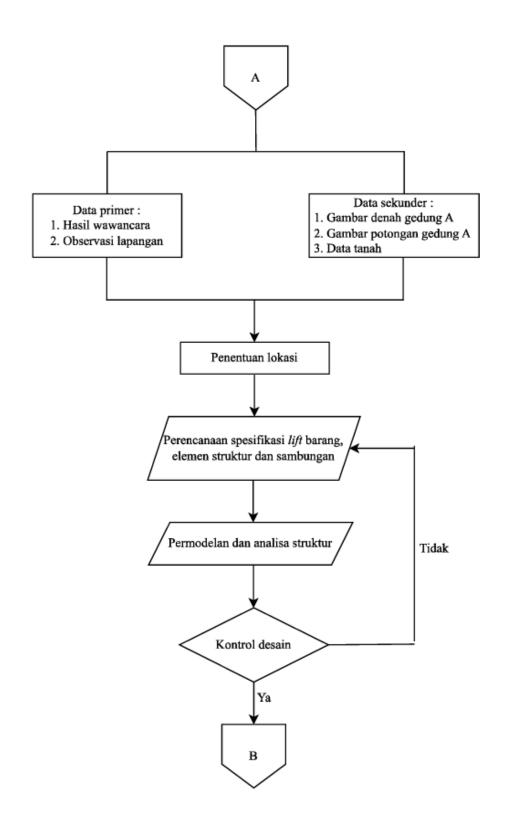
Hasil : Pada beban total pada elevator 2662.5 kg, maka Hoist yang dipakai kapasitas 3 Ton dalam titik aman Q total 2662, 5 kg (2,6 Ton) < 3000 kg (3 Ton), toleransi safety 11.25 %. Pada Tegangan maksimum S = 1401.35 kg, lebih kecil dari tegangan yang dizinkan S = 1965,270 kg, toleransi safety 28,69 % . Pada beban patah maksimum adalah P = 7864,52 kg, lebih kecil dibandingkan tegangan patah yang di izinkan standar SNI (Pb) = 10808.99 kg, toleransi safety 27,24 β 0,7 0,5 0,4 0,3 0,2 %. Pada tegangan tarik pada tarikan tali baja Maksimum σt = 9.09 kg/mm2, lebih kecil dibandingkan dengan tegangan tarik yang di izinkan σΣ = 29,09 kg / mm2, toleransi safety tegangan tarik adalah 68,75 %

Pada penelitian tugas akhir ini, posisi penelitian dapat dilihat pada gambar dibawah ini untuk melihat variabel x yang berkaitan dengan penelitian terdahulu.

Gambar 2. 42 Posisi Penelitian

BAB III


METODE PENELITIAN


3.1 Metode penelitian

Dalam sebuah penelitian, metode penelitian merupakan hal yang perlu dijelaskan secara rinci karena pada metode penelitian akan menggambarkan bagaimana proses yang ditempuh untuk melakukan penelitian tersebut. Pada penelitian ini metode yang digunakan adalah metode numerik dan metode analisis. Dalam metode numerik peneliti melakukan perhitungan untuk menentukan spesifikasi *lift*, desain kerangka struktural, daya dukung pondasi dan rencana anggaran biaya. Hasil dari metode numerik adalah nilai kapasitas dari elemen struktur, nilai daya dukung pondasi yang digunakan, dan biaya yang dibutuhkan untuk membangun *lift* barang. Sedangkan dalam metode analisis, penelliti akan melakukan analisi terhadap keselamatan pada pekerjaan *lift* barang, dimana hasil dari metode analisis ini adalah jenis bahaya dan resiko yang ada pada pekerjaan pembangngunan *lift* barang.

3.2 Diagram alir

Berikut merupakan diagram alir penelitian yang digunakan dalam penelitian ini.

Gambar 3. 1 Diagram alir

3.3 Prosedur penelitian

Prosedur penelitian yang digunakan peneliti dalam tugas akhir ini adalah sebagai berikut :

3.3.1 Studi literatur

Studi literatur merupakan langkah awal yang dilakukan oleh peneliti untuk mecari referensi tentang penelitian yang bersangkutan dengan penelitian yang diambil. Riset yang dilakukan oleh peneliti merupakan riset tentang perencanaan *lift*, baik itu spesifikasi teknis *lift* maupun elemen struktur *lift*. Pada studi literatur ini peneliti berfokus pada penelitian tentang *lift* barang yang akan mempersingkat waktu riset peneliti dalam mencari referensi. Peneliti juga melakukan riset tentang bagaimana pembebanan yang ada pada *lift*, *software* permodelan struktur yang digunakan, dan banyak hal lainnya yang bersangkutan dengan topik penelitian ini.

Setelah dilakukannya riset tentang topik penelitian ini, peneliti mendapatkan pemahaman tentang spesifikasi teknis *lift* barang yang akan direncanakan, elemen struktur *lift* barang yaitu menggunakan material baja, dan interkoneksi antar elemen maupun sistem angkur pada kondisi eksisting. Mutu dan perencanaan dimensi awal elemen stuktur maupun sambungan akan direncanakan berdasarkan asumsi tanpa menggunakan preliminary design.

Pemahaman yang telah didapat dari riset yang dilakukan oleh peneliti menghasilkan wawasan mengenai rencana bentuk struktur lift barang dan lokasi atau tempat lift barang akan dibangun pada gedung A Institut Teknologi Kalimantan yang tentunya dalam perencanaan ini peneliti harus mempertimbangkan lokasi atau tempat yang tersedia pada kondisi eksisting untuk merencanakan dimensi lift barang.

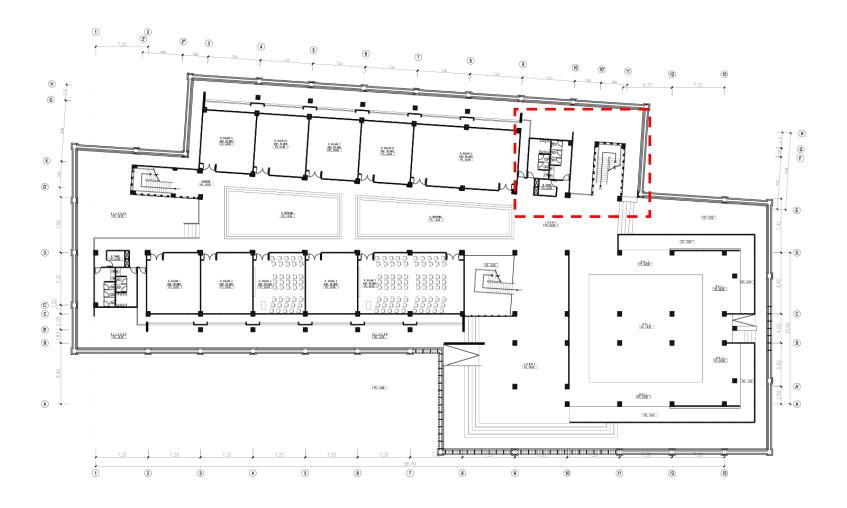
3.3.2 Pengumpulan data

Teknik pengumpulan data yang dilakukan peneliti berdasarkan hasil studi literatur yang dilakukan adalah menggunakan dua jenis data yaitu data primer dan data sekunder. Dimana dari studi literartur yang dilakukan peneliti harus mengetahui berat dan dimensi terbesar barang yang diangkut untuk perencanaan spesifikasi teknis *lift* barang, hal ini merupakan alasan dilakukannya pengumpulan

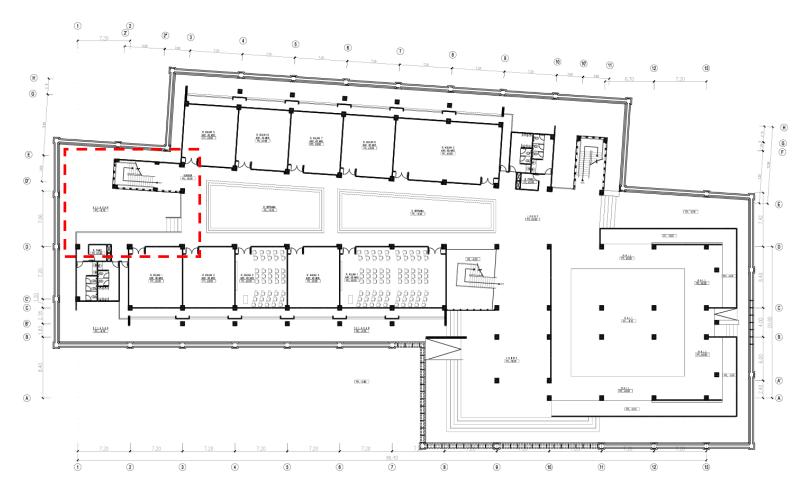
data primer. Sedangkan pengumpulan data sekunder dibutuhkan karena pada studi literatur sebelumnya sudah dijelaskan juga bahwa peneliti dalam merencanakan dimensi lift barang harus mempertimbangkan tempat atau lokasi yang tersedia pada kondisi eksistin.

A. Data primer

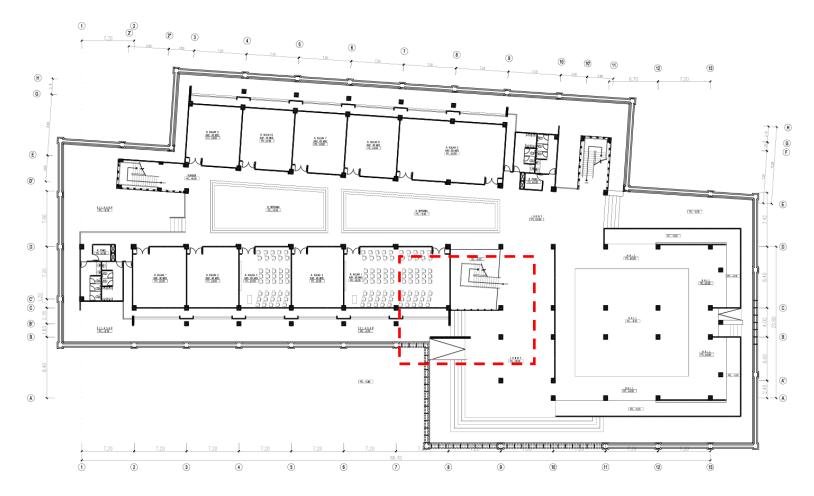
Data primer yang dibutuhkan oleh peneliti didapat dari hasil wawancara dan observasi lapangan. Peneliti melakukan wawancara untuk mengetahui dimensi barang terbesar dan berat barang masimum sebagai acuan perencanaan desain *lift* barang. Pada pengumpulan data primer ini peneliti juga melakukan observasi lapangan untuk mengetahui letak atau posisi rencana lift barang akan dibangun atau ditempatkan.


B. Data sekunder

Peneliti melakukan pengumpulan data dari sumber yang sudah ada sebelumnya untuk mendukung proses perencanaan maupun perhitungan dalam penelitian ini. Data sekunder yang diperlukan oleh peneliti berupa gambar kerja (denah dan potongan) dan data tanah yang diperoleh dari instanasi terkait, jurnal-jurnal dan buku yang berasal dari media internet dan perpustakaan, standar-standar luar negeri maupun indonesia yang diperoleh dari media internet.


Data sekunder yang harus dimiliki oleh peneliti terlebih dahulu adalah ketersediaan lokasi atau tempat pada area gedung A, dimana pada literatur yang telah dilakukan perencanaan dimensi lift barang maupun dimensi strukturnya harus disesuaikan dengan lokasi atau tempat yang tersedia. Data sekunder yang dimaksud dalam hal ini adalah data berupa gambar kerja .

3.3.3 Penentuan lokasi


Dimana denah akan menjadi acuan awal dalam memposisikan lift barang dan merencanakan dimensi lift barang atau luas lift barang sesuai dengan kondisi eksisting. Sedangkan gambar potongan digunakan untuk menentukan tinggi elemen struktur lift barang yang akan dibangun. Denah gedung A Institut Teknologi Kalimantan dapat dilihat pada gambar berikut ini.

Gambar 3. 2 Posisi A

Gambar 3. 3 Posisi B

Gambar 3. 4 Posisi C

Lokasi atau posisi lift barang yang direncanakan peneliti dapat dilihat pada gambar diatas, dimana peneliti merencanakan 3 posisi lift barang. Terlihat pada gambar denah diatas posisi rencana lift barang terbagi atas posisi A, posisi B, posisi C. Dalam memilih lokasi lift yang paling relefan dengan kondisi eksisting, peneliti melakukan analisis dengan metode matriks *pros cons* untuk mendapatkan kesimpulan atau keputusan dengan cara memberikan beberapa kriteria yang diberikan penjelasan berupa pro dan kontra terhadap kriteria tersebut. Analisis dengan metode matriks *pros cons* dapat dilihat pada tabel berikut ini.

 Tabel 3. 1 Metode matriks pros cons

Kriteria	Posisi				
	A	В	С		
Aksesibilitas	Pro: 1. Dekat dengan gudang barang 2. Dekat dengan parkiran	Pro: 1. Akses mudah	Pro: 1. Akses mudah		
	Kontra: 1. Akses sedikit sulit 2. Area kerja sempit dan sulit, karena berada diantara bangunan eksisting	Kontra: 1. Adanya DPT dan perbedaan elevasi yang tinggi antara jalan dengan letak lift, memungkinkan kesulitan dalam mememindahkan barang dari kendaraan menuju lift barang. 2. Lokasi gudang barang ke lokasi lift sulit	(basemant), dimana lokasi lift berada pada lantai l		
Ruang tersedia	Pro:	Pro: 1. 51 m ²	Pro: 1. 29 m ²		
	Kontra: 1. 26 m ²	Kontra:	Kontra:		
Efisiensi operasional	Pro: 1. Efisiensi tinggi karena lokasi lift dekat dengan area gudang barang	Pro: 1. Efisiensi sedang karena lokasi lift berada dilantai 1 dan lumayan dekat dengan gudang barang	Pro:		
	Kontra:	Kontra:	Kontra:		

Kriteria	Posisi						
	A	В	С				
			Efisiensi rendah karena lokasi lift berada jauh dari area gudang barang				
Kenyamanan dan keamanan pengguna	Pro: 1. Tidak mengganggu aktivitas pengguna gedung karena lokasi lift berada diluar bangunan 2. Tingkat keamanan pengguna tinggi, karena lokasi lift berada pada lantai basemant sehingga barang yang diangkut dari gudang barang ke lokasi lift lebih terjangkau sehingga mengurangi risiko kecelakaan kerja.	Pro: 1. Tidak mengganggu aktivitas pengguna gedung karena lokasi lift berada diluar bangunan	Pro:				
	Kontra:	Kontra: 1. Tingkat keamanan pengguna rendah karena lokasi lift berada pada lantai 1, dimana barang dari gudang akan diangkut terlebih dahulu dari basemant menuju lantai 1 sehingga memungkinkan terjadinya kecelakaan kerja	Kontra: 1. Sedikit mengganggu pengguna gedung karena lokasi lift berada didalam bangunan dekat dengan akses tangga masuk gedung 2. Tingkat keamanan pengguna rendah karena lokasi lift berada pada lantai 1, dimana barang dari gudang akan diangkut terlebih dahulu dari basemant menuju lantai 1 sehingga memungkinkan terjadinya kecelakaan kerja				

Kriteria		Posisi	
	A	В	С
Biaya pembangunan	Pro:	Pro: 1. Biaya relatif lebih murah, karena lokasi lift akan dibangun menupakan tanah kosong maka tidak perlu dilakukan modifikasi struktural	Pro:
	Kontra:	Kontra:	Kontra:
	 Pada lokasi lift yang akan dibangun sudah ada tempat wudhu maka harus dilakukan pembongkaran terlebih dahulu, maka biaya relatif lebih mahal 	-	1. Biaya relatif lebih mahal karena akan dilakukan pembongkaran atau modifikasi struktur karena lokasi lift yang akan dibangun berada didalam bangunan

Setelah evaluasi pro dan kontra terhadap setiap kriteria dan posisi yang disarankan dilakukan, maka selanjutnya dilakukan penilaian berupa skala 1 sampai 5 untuk memberikan gambaran kuantitatif seberapa baik setiap opsi posisi lift yang disarankan terhadap kriteria yang ditetapkan.

Tabel 3. 2 Penentuan skala pada masing-masing kriteria

				Skala		
Posisi	Kriteria	1	2	3	4	5
		Sangat buruk	Buruk	Cukup	Baik	Sangat Baik
A	Aksesibilitas				✓	
	Ruang tersedia			✓		
	Efisiensi operasional					√
	Kenyamanan dan keamanan pengguna					✓
	Biaya pembangunan			✓		
В	Aksesibilitas			✓		
	Ruang tersedia					✓
	Efisiensi operasional					✓
	Kenyamanan dan keamanan pengguna				<u> </u>	
	Biaya pembangunan					√
С	Aksesibilitas				√	
	Ruang tersedia					✓
	Efisiensi operasional			✓		
	Kenyamanan dan keamanan pengguna			✓		
	Biaya pembangunan			√		

Tabel 3. 3 Penentuan posisi

Posisi	Skor	Total	
A	4+3+5+5+3	20	

В	3+5+5+4+5	22	
C	4+5+3+3+3	18	

Dari hasil penilaian berupa skala pada setiap kriteria yang ditetapkan, maka diperoleh skor dari setiap posisi lift, dimana skor tersebut bisa dilihat pada tabel diatas. Terlihat bahwa skor tertinggi berada pada posisi B, dimana nilai skor aksesibilitas adalah 3, ruang tersedia memiliki skor 5, efisiensi operasional dengan skor 5, kenyamanan dan keamanan pengguna memiliki skor 4. Maka dari hasil penjumlahan skor pada posisi B didapatkan total skor adalah 22.

3.3.4 Perencanaan spesifikasi *lift* barang

Tahapan ini merupakan tahapan penentuan desain spesifikasi *lift* yang mengacu pada hasil wawancara untuk mendapatkan data berupa dimensi dan berat barang. Pada tahapan ini peneliti akan merencanakan kapasitas lift barang berdasarkan beban terberat yang diangkut, dimensi sangkar atau kereta yang nantinya akan mempengaruhi luasan lift barang yang akan ditentukan berdasarkan kondisi eksisting, bobot imbang, jenis tali yang akan digunakan dan daya motor listrik yang digunakan.

Tabel 3. 4 Parameter spesifikasi lift barang

Parameter	Keterangan		
Kapasitas (Q)	Kapasitas lift (Q) dapat dihitung berdasarkan beban maksimum yang akan diangkut. Dimana beban maksimum diketahui berdasarkan hasil wawancara yang dilakukan kepada pihak pengelola gedung dan pada OB gedunga A kampus Institut Teknologi Kalimantan.		
Dimensi Sangkar/kereta	Dalam merencanakan dimensi sangkar pada lift barang ini, terlebih dahulu dilakukan wawancara untuk mendapatkan dimensi barang terbesar yang akan diangkut. Setelah dimensi		
Jenis tali dan	Untuk menghitung beban yang dipikul oleh setiap tali kawat		
tegangan tali baja parameter yang harus diketahui terlebih dahu			
	kapasitas lift, beban penyeimbang, beban kabin.		
Daya motor	Daya motor listrik di hitung berdasarkan kapasitas dan		
listrik beban-beban yang ada pada <i>lift</i> tersebut.			

3.3.5 Perencanaan desain awal dan permodelan struktur

Penentuan desain struktur direncanakan dengan cara mengasumsikan dimensi dan mutu elemen struktur. Peneliti juga akan melakukan perhitungan terhadap pembebanan pada elemen struktur untuk mendapatkan nilai beban dari masing-masing elemen . Kemudian data-data tersebut diinput kedalam SAP2000 untuk memperoleh gaya dalam yang bekerja pada masing-masing elemen struktur tersebut.

Tabel 3. 5 Parameter kriteria desain dan permodelan struktur

Parameter	Keterangan	Sumber	
Dimensi elemen	Balok	Asumsi	
struktur	Kolom	Asumsi	
	Beban mati	SNI 1727: 2020	
Pembebanan pada	Beban hidup	SNI 1727: 2020 &	
elemen struktur		PPIUG 1983	
	Beban angin	SNI 1727: 2020	
	Beban gempa	SNI 1726: 2019	
Permodelan struktur	Permodelan struktur dilakukan dengan menginput data elemen struktur dan beban-beban yang bekerja pada struktur untuk mendapatkan gaya dalam yang bekerja pada masing-masing elemen untuk keperluan perhitungan teoritis (kontrol desain) dan memberikan model struktur secara 3D sebagai gambaran simulasi struktur.	Software SAP2000	

3.3.6 Analisis Kapasitas

Tahapan analisis kapasitas ini merupakan perhitungan teoritis yang dilakukan pada setiap elemen struktural terhadap gaya dalam yang dihasilkan dari hasil permodelan menggunakan SAP2000. Dalam tahap ini peneliti akan melakukan kontrol terhadap kapasitas elemen struktur dan sambungan.

Tabel 3. 6 Parameter kontrol kapasitas struktur

Parameter kontrol kapasitas struktur	Keterangan	Sumber
Kapasitas elemen tarik	Keruntuhan leleh	SNI 1729, 2020
Kapasitas elellieli tarik	Keruntuhan fraktur	SNI 1729, 2020
	Tekuk lentur	SNI 1729, 2020
Kapasitas elemen	Tekuk torsi	SNI 1729, 2020
tekan	Tekuk torsi-lentur	SNI 1729, 2020
	Kuat geser baut	SNI 1729, 2020
Kapasitas sambungan	Kuat tarik baut	SNI 1729, 2020
Kapasitas samoungan	Kuat tumpu dan sobek lubang baut	SNI 1729, 2020
Dogo plata	Kontrol dimensi baseplate	Fisher & Kloiber, 2006
Base plate	Kontrol ketebalan baseplate	Fisher & Kloiber, 2006.

Parameter kontrol kapasitas struktur	Keterangan	Sumber	
	Kuat jebol beton terhadap tarik Fisher & Kloi 2006		
Angkur	Kuat cabut angkur terhadap tarik	Fisher & Kloiber, 2006	
	Kuat cabut angkur dari beton	Fisher & Kloiber, 2006	

3.3.7 Gambar kerja

Gambar kerja akan digambar menggunakan software AutoCAD 2021, dimana pada tahap ini peneliti akan menuangkan semua hasil perhitungan dari segi struktural yang didapat ke dalam bentuk gambar. Gambar kerja ini berupa gambar elemen struktur *lift* barang dan detail sambungannya yang nantinya akan digunakan untuk perhitungan sub bab berikutnya.

3.3.8 Perencanaan fondasi

Tahapan dalam merencanakan struktur bawah pada struktur lift ini adalah perencanaan fondasi.

Tabel 3. 7 Parameter perencanaan fondasi

Parameter	Keterangan	Sumber
Kapasitas daya dukung tanah	Korelasi nilai qc Uji sondir /CPT SNI 8460: 2	
Ромунион	Akibat deformasi aksial tiang	SNI 8460: 2017
Penurunan	Ujung tiang	SNI 8460: 2017
	Selimut tiang	SNI 8460: 2017
I ataral pandasi	Kriteria tiang	SNI 8460: 2017
Lateral pondasi	Defleksi tiang	SNI 8460: 2017

3.3.9 Analisis biaya

Pada tahap ini dilakukan perhitungan biaya berdasarkan hasil desain struktur yang dituangkan dalam bentuk gambar yang kemudian dijadikan sebagai acuan perhitungan biaya. Spesifikasi *lift* barang juga memepengaruhi biaya, dimana jenis dan spesifikasi materialnya akan berpengaruh terhadap harganya.

Tabel 3. 8 Parameter perhitungan biaya

Parameter perhitungan biaya	Keterangan	Sumber
Volume pekerjaan	Volume pekerjaan dihitung berdasarkan gambar kerja yang telah dibuat.	Buku Manajemen proyek konstruksi oleh Mahyudin dkk, 2023.
Daftar harga bahan dan upah	Harga bahan dan upah yang digunakan harus merupakan harga pada tahun terbaru dan harga yang sesuai dengan harga satuan daerah balikpapan.	Buku Manajemen proyek konstruksi oleh Mahyudin dkk, 2023.
AHSP (analisa harga satuan pekerjaan)	Analisa harga satuan pekerjaan tiap item pekerjaan didapatkan dari AHSP kota balikpapan tahun terbaru yang bisa dicari pada media internet dan sumber terpercaya.	Buku Manajemen proyek konstruksi oleh Mahyudin dkk, 2023.
DHS (daftar harga satuan)	Daftar harga satuan didapatkan dari total akhir perhitungan item pekerjaan yang terdapat pada tabel AHSP untuk mempermudah perhitungan di RAB.	Buku Manajemen proyek konstruksi oleh Mahyudin dkk, 2023.
RAB (rencana anggaran biaya)	Rencana anggaran biaya dihitung berdasarkan volume pekerjaan yang dihitung sebelumnya dan harga satuan pekerjaan yang ada pada daftar harga satuan (DHS).	Buku Manajemen proyek konstruksi oleh Mahyudin dkk, 2023.
Total RAB	Dari rencana anggaran biaya dilakukan pentotalan biaya, dimana total biaya ini merupakan biaya yang dibutuhkan untuk membangun <i>lift</i> barang pada gedung A.	Buku Manajemen proyek konstruksi oleh Mahyudin dkk, 2023.

3.3.10 Analisis keselamatan

Tahapan ini membahas tentang analisis keselamatan dari segi operasional lift barang untuk mengetahui aspek keselamatan yang ada pada lift barang. Hal ini dilakukan untuk mengetahui tingkat keamanan terhadap bahaya dan risiko yang terjadi pada saat pengoperasian lift tersebut. Bahaya dan risiko dianalisis berdasarkan item pekerjaan yang dikerjakan dan berdasarkan lokasinya. Metode

yang digunakan untukk mengasanalisis bahaya dan pengendalian risiko adalah menggunakan metode HIRADC.

BAB IV

HASIL DAN PEMBAHASAN

4.1 Spesifikasi Lift Barang

Spesifikasi lift merupakan hal yang sangat perlu direncanakan dengan matang, karena spesifikasi lift akan menentukan fungsi lift tersebut. Spesifikasi lift akan menggambarkan ukuran, kapasitas, komponen atau fitur-fitur dalam sebuah lift tergantung dengan kebutuhan penggunaannya. Spesifikasi lift yang dimaksud adalah kapasitas angkut, dimensi kabin, jenis sistem penggerak, material struktur, sistem keamanan serta fitur operasional agar lift bekerja dengan baik dan aman. Pada penelitian ini beberapa data spesifikasi lift didapatkan berdasarkan hasil wawancara yang telah dilakukan yang diperoleh peneliti, kemudian diolah untuk mendapatkan nilai dari parameter yang dibutuhkan.

4.1.1 Kapasitas

Penentuan kapasitas lift barang ditentukan berdasarkan beban maksimum (kg) yang diangkut dalam suatu gedung tersebut. Dari hasil wawancara yang telah dilakukan peneliti, beban maximum yang diangkut berupa Kontainer *box* dengan bobot per*box* adalah 19,5 kg (*box container* jumbo ukuran 195 liter). Jumlah kontainer *box* yang rencana diangkut adalah 6 kontainer box. Sehingga dalam penentuan kapasitas lift barang pada penelitian ini dapat dihitung dengan menggunakan persamaan berikut ini.

Q =Beban maksimum ×Jumlah item (dalam sekali angkut)

 $Q = 19.5 \text{ kg} \times 6 \text{ Box}$

Q = 117 kg

Q = 200 kg

Pada dasarnya lift barang tidak memiliki standar yang baku, karena kapasitas lift tergantung banyaknya barang yang diangkut. Namun pada pelaksanaannya, kapasitas lift barang yang dipkaia adalah 500 kg, 1 ton, 3 ton hingga 5 ton (Nikisae Elevator, 2019). Maka pada penelitian ini kapasitas rencana yang digunakan adalah 500 kg.

4.1.2 Sangkar/kereta

Sangkar atau kereta yang digunakan pada lift barang penelitian ini dapat dihitung berdasarkan dimensi barang yang digunakan pada perhitungan kapasitas lift barang sebelumnya yaitu menggunakan dimensi *box container*. Dimensi 1 *box* kontainner adalah 915 x 650 x 700 mm. Maka dimensi kereta atau sangkar lift barang yang dibutuhkan untuk menagangkut 12 kontainer adalah sebagai berikut.

Panjang Sangkar:

 $P = 915 \text{ mm} \times 2 \text{ Box}$

P = 1830 mm

P = 1,83 m

Maka panjang sangkar yang digunakan adalah 1,83 meter.

Lebar sangkar:

 $L=650 \text{ mm} \times 2 \text{ Box}$

L=1300 mm

L=1.3 m

Maka lebar sangkar yang digunakan adalah 1,3 meter.

Tinggi sangkar:

 $T = 700 \text{ mm} \times 3 \text{ Box}$

T = 2100 mm

T = 2.1 m

Maka tinggi sangkar yang digunakan adalah 2,1 meter.

Dari hasil perhitungan diatas maka diperoleh data dimensi sangkar yang digunakan pada penelitian ini adalah 1,83 X 1,3 X 2,1 meter.

4.1.3 Tali kawat baja

Tali yang digunakan menarik sangkar harus dirancang menggunakan tali yang materialnya berasal dari baja atau logam lainnya. Penggunaan tali baja sebagai penarik sangkar juga dipilih karena efisiensi biaya, karena menggunakan tali baja lebih murah dibangdingkan menggunakan tali rantai. Dari segi kegagalan, penggunaan tali baja lebih aman dibandingkan penggunaan tali rantai. Tali baja tidak akan langsung putus saat mengalami kegagalan, tali baja bagian luar akan

terlebih dahulu putus sebelum tali bagian luar yang menandakan bahwa tali tersebut perlu diganti. Sedangkan kegagalan pada tali rantai akan langsung putus dan hal ini menimbulkan risiko bahaya yang sangat besar dibandingkan penggunaan tali baja.

1. Menghitung berat kabin kosong (G_k)

Berat kabin kosong merupakan berat sangkar lift tanpa adanya beban atau muatan yang dimasukkan, perhitungan berat kabin kosong (G_k) dapat dilihat pada tabel dan contoh perhitungan berikut.

Tabel 4. 2 Data elemen kabin/kereta lift barang

Elemen	P	L	T	Berat
Elemen	m	m	m	kg
Frame Channel 100x50x5x7,5	20,8			194,688
Pelat borders (lantai) tebal 2 mm	1,8	1,3	0,02	45,2679
Pelat besi (Dinding) tebal 1 mm	1,8	1,3	2,1	56,5023
Pelat besi (Atap) tebal 1 mm	1,8	1,3	0,01	10,1548
	306,	613		kg
Berat total	0,	3		ton

Dimensi setiap elemen sangkar didapatkan dari hasil desain peneliti, yang kemudian dilampirkan kedalam tabel untuk mendapatkan berat sangkar. Berikut salah satu contoh perhitungan elemen sangkar yaitu Frame Channel 100x50x5x7,5.

Berat frame = $P \times BJ$

Berat frame = 20.8×9.36

Berat frame =194,688 kg

Berat frame = 0.1 ton

2. Menghitung beban tali (G_{kt})

Beban tali yang dimaksud adalah beban dari tali baja pengangkat termasuk kabel-kabel listrik dan tali-tali yang lain yang ada pada perencanaan lift barang ini. Dimana beban tali ini diasumsikan adalah 50 kg atau 0,49 kN.

3. Menghitung beban yang dipikul setiap tali kawat baja

Beban total yang ditahan oleh tali baja yang digunakan untuk mengangkat kabin atau sangkar lift dapat dihitung menggunakan persamaan berikut :

$$S = \frac{G_{tot}}{n.\eta.\eta_1}$$

Dimana untuk menghitung Gtot dilakukan perhitungan terlebih dahulu.

$$G_{tot} = G_k + Q + G_{kt}$$

$$G_{tot} = 306,61 \text{ kg} + 500 \text{ kg} + 50 \text{ kg}$$

$$G_{tot} = 856,61 \text{ kg}$$

$$G_{tot} = 0.85 \text{ ton}$$

$$S = \frac{G_{tot}}{n.\eta.\eta_1}$$

$$S = \frac{856,61}{1 \times 0,971 \times 0,98}$$

$$S = 900,2 \text{ kg}$$

$$S = 8.82 \text{ kN}$$

4. Luas penampang efektif tiap kawat baja (A)

$$A = \frac{S}{\frac{\sigma \text{ maks}}{K} - \frac{d}{D \min} \times \frac{E'}{1,5\sqrt{i}}}$$

$$A = \frac{8822}{\frac{1800}{5,5} - \frac{1}{26,5} \times \frac{77,22}{1,5\sqrt{222}}}$$

$$\frac{1600}{5,5} - \frac{1}{26,5} \times \frac{77,22}{1,5\sqrt{22}}$$

$$A = 26,98 \text{ mm}^2$$

Maka luas penampang efektif kawat baja adalah 26,98 mm².

5. Diameter utama tali kawat baja (d)

$$d = \sqrt{\frac{4 \times A}{\pi}}$$

$$d = \sqrt{\frac{4 \times 26,98}{3,14}}$$

$$d = 5,86 \text{ mm}$$

Maka diameter utama tali kawat baja yang digunakan adalah 8 mm.

6. Diameter serabut kawat pada tali baja (δ)

$$\delta = \frac{d}{1,5\sqrt{i}}$$

$$\delta = \frac{8}{1,5\sqrt{222}}$$

 $\delta = 0.02 \text{ mm}$

7. Tegangan tarik tali kawat baja utama (σi)

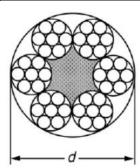
$$\sigma i = \frac{\sigma}{K}$$

$$\sigma i = \frac{18000}{5.5}$$

 $\sigma i = 327,27 \text{ N/mm}^2$

8. Tegangan tarik utama yang sebenarnya terjadi

$$\sigma t = \frac{S}{A} + \frac{\delta \times E'}{D_{min} \times d}$$


$$\sigma t = \frac{8822}{26,98} + \frac{0,02 \times 77,22}{26,5 \times 8}$$

$$\sigma t = 320,22 \text{ N/mm}^2$$

Dari hasil perhitungan diatas dapat disimpulkan bahwa nilai tegangan tarik yang yang sebenarnya terjadi pada tali lebih kecil dari tegangan tarik yang diijinkan (σt < σi), dimana 320,22 N/mm2 < 327,27 N/mm2. Maka tali yang digunakan dengan diameter 8 mm aman digunakan pada perencanaan lift barang ini.

Hasil dari perhitungan diatas dapat dilihat pada tabel data spesifikasi tali baja dibawah ini.

Tabel 4. 3 Spesifikasi tali baja

Keterangan	Simbol	Nilai	Satuan	
Diameter tali d		8	mm	
Approx weight	W	0,282	kg/m	
Minimum breaking		1800	N/mm2	
load		1300	18/1111112	

(BALIGE STEEL)

4.1.4 Perencanaan motor listrik

Pemilihan sistem penggerak lift barang dengan sistem motor traksi untuk pada gedung A kampus ITK dengan kapasitas 500 kg dilakukan dengan pertimbangan kelebihan dan kekurangan dari setiap sistem penggerak. Penggunaan sisitem penggerak dengan motor traksi digunakan karena sistem ini menawarkan efisiensi energi yang tinggi, kecepatan dan kapasitas layanan yang lebih baik, perawatan yang lebih mudah dan ramah lingkungan, serta fleksibilitas dalam penyesuaian ruang pada kondisi bangunan eksisting. Selain itu, lift traksi memberikan kenyamanan dan keamanan yang lebih baik bagi pengguna, sehingga sangat sesuai untuk mendukung aktivitas kampus yang dinamis dan membutuhkan solusi transportasi vertikal yang andal serta efisien.

Daya motor yang diperlukan untuk mengangkat beban pada lift barang dihitung dengan menggunakan data berikut :

Tabel 4. 4 Parameter untuk menghitung daya motor

Keterangan	Simbol	Nilai	Satuan
Kecepatan angkat	V	1	m/s
Efisiensi total	η	0,85	

$$N = \frac{(Q+G_k).V}{\eta}$$

$$N = \frac{(500 + 306,613).1}{75 \times 0,85}$$

$$N = 12,65 \text{ kw}$$

$$N = 12,65 \times 1,34 = 16,95 \text{ HP} \approx 17 \text{ HP}$$

Dari hasil perhitungan daya motor listrik yang telah dilakukan, maka didapatkan spesifikasi motor listrik sebagai berikut :

Tabel 4. 5 Spesifikasi motor listrik

Electric motor 3Phase 17 HP 11kW 1500 rpm

Keterangan	Simbol	Nilai	Satuan
Daya motor	P _m	17	HP
Putaran motor	n	1500	rpm

(Sumber : PT. Parsial Dua Teknik)

Motor listrik yang digunakan pada sistem ini adalah tipe electric motor tiga fasa dengan daya 17 HP (*Horse Power*) atau setara dengan 11 kW dan memiliki kecepatan putaran sebesar 1500 rpm. Motor ini didesain untuk aplikasi industri yang membutuhkan tenaga besar dan putaran stabil, seperti pada sistem penggerak mesin atau peralatan berat. Daya motor sebesar 17 HP menunjukkan kemampuan motor dalam menghasilkan tenaga mekanis yang cukup besar untuk menggerakkan beban sesuai kebutuhan sistem. Sementara itu, kecepatan putaran 1500 rpm merupakan kecepatan standar untuk motor induksi tiga fasa, yang umumnya digunakan pada sistem transmisi daya karena menghasilkan torsi yang stabil dan efisiensi kerja yang tinggi. Dengan spesifikasi tersebut, motor ini sangat cocok digunakan sebagai penggerak utama dalam aplikasi yang memerlukan performa tinggi dan keandalan operasional, seperti pada lift barang, *conveyor*, atau pompa industri. Selain itu, penggunaan motor tiga fasa memberikan keunggulan dalam hal efisiensi energi dan umur pakai yang lebih panjang dibandingkan motor satu fasa.

4.2 Perencanaan Struktur dan Sambungan

4.2.1 Pembebanan

A. Beban Mati

Beban mati merupakan berat seluruh bahan bangunan yang terpasang, seperti dinding, lantai, atap, plafond, tangga, dinding partisi tetap, finishing, klading gedung dan komponen arsitektural dan struktural lainnya serta peralatan layan terpasang lain termasuk berat derek dan sistem pengangkut material. Beban mati yang terdapat pada konstruksi lift barang ini dilampirkan pada tabel berikut:

Tabel 4. 6 Beban mati

Jenis Beban	Berat Jenis	Satuan	Sumber
Baja	7850	kg/m2	SNI 07-2050-2002
Beton	2400	kg/m2	PPIUG 1983

B. Beban Hidup

Beban hidup merupakan beban yang diakibatkan oleh pengguna dan penghuni bangunan gedung dan struktur lain yang tidak termasuk beban konstruksi dan beban lingkungan, seperti beban angin, beban hujan, beban gempa, beban banjir atau beban mati. Beban hidup yang terdapat pada konstruksi lift barang ini dilampirkan pada tabel berikut:

Tabel 4. 7 Beban hidup

Jenis Beban	Simbol	Berat Jenis	Satuan	Sumber
Kapasitas Lift	Q	500	kg	
Kabin kosong	G_k	306,613	kg	
Beban akibat berat sendiri + muatan yang diangkat (dikalikan dengan koef.kejut)	Р	806,61	kg	PPIUG 1983
Beban lift akibat mesin bergerak maju mundur	R	1209,91	kg	SNI 1727:2020

C. Beban Lingkungan

1. Beban angin

Beban angin merupakan beban lingkungan dimana semakin tinggi bangunan maka semakin besar pula beban angin yang bekerja pada struktur bangunan tersebut. Beban angin rencana pada dasarnya didapat dari kecepatan angin dasar kemudian dikonversikan dengan faktor-faktor tertentu, seperti arah angin, faktor keutamaan bangunan, eksposur, topografi, serta bentuk struktur yang menjadi tekanan atau gaya. Beban angin dianalisis menggunakan SNI 1727-2020, hasil analisis beban angin dapat dilihat pada tabel dibawah ini:

Tabel 4. 8 Analisis beban angin

Parameter	Simbol	Nilai	Satuan	Acuan
Kecepatan Angin	V	2	m/s	BPS Prov
Dasar	v			Kaltim 2015
				SNI 1727-
Faktor Arah Angin	Kd	0,85		2019 (Lembar
				143)
				SNI 1727-
Eksposur		В		2019 (Lembar
				144)
				SNI 1727-
Faktor Topografi	Kzt	1		2019 (Lembar
				147)
				SNI 1727-
Faktor Elevasi	Ke	1		2019 (Lembar
				147)
Koefisien Eksposur				SNI 1727-
Tekanan Kecepatan	Kz	0,76		2019 (Lembar
				148)
				SNI 1727-
Tekanan Kecepatan	Qz	2	m/s	2019 (Lembar
				116)
Faktor Pengaruh				SNI 1727-
Hembusan Angin	Gf	0,85		2019 (Lembar
Ticinousan Angin				149)
				SNI 1727-
	Gcpi	0,18		2019 (Lembar
				154)
Faktor Ketertutupan		-0,18		
				SNI 1727-
		0,8		2019 (Lembar
				163)
<u> </u>				

Koefisien Tekanan Eksternal	Ср	0,85		SNI 1727- 2019 (Lembar 149)
Tekanan Angin	P	0,760632958	N/m2	SNI 1727- 2019 (Lembar 159)
Tekanan Angin	P	0,000760633	kN/m2	SNI 1727- 2019 (Lembar 159)
Cek dengan Pmin (0.77) < P		0,77	kN/m2	SNI 1727- 2019 (Lembar 157)

Maka dari hasil analisis perhitungan yang telah dilakukan pada beban angin, digunakan beban angin senilai 0,77 kN/m2.

2. Beban Hujan

Pada atap bangunan, beban hujan baik dalam bentuk butiran air hujan maupun genangan air akan bekerja sebagai beban hidup. Struktur bangunan perlu di desain agar mampu menahan hujan pada kondisi drainase primer ditutup. Hal tersebut disebabkan karena beban hujan merupakan beban yang tidak tetap dan mengakibatkan perubahan pembebanan atap pada struktur bangunan. Atap pada lift barang ini merupalan atap plat datar, dimana pada PPIUG:1983 menyatakan bahwa beban hujan dengan atap datar ($\alpha = 0$) dihitung dengan menggunakan persamaan sebagai berikut:

$$q_h = 40 - 0.8\alpha$$

$$q_h = 40 - 0.8 (0)$$

$$q_h = 40 \text{ kg/m}^2$$

Maka beban hujan pada pelat lift barang tersebut adalah 40 kg/m^2

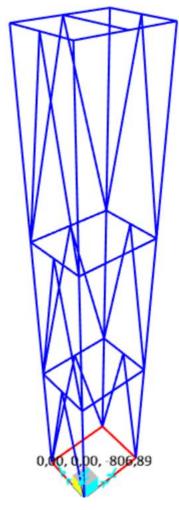
3. Beban Gempa

Beban gempa merupakan perkalian dari massa yang berasal dari struktur dan komponen lainnya yang terdapat pada struktur tersebut dan percepatan tanah yang bersumber dari gempa yang terjadi. Analisis beban gempa secara umum dapat dilakukan melalui 3 cara, yaitu analisis statis ekuivalen, analisis respons spektrum, dan Analisa riwayat waktu. Ketentuan mengenai pembebanan gempa ini mengikuti ketentuan dalam SNI 1726-2020. Pada penelitian ini beban gempa dihitung menggunakan analisisi statik ekivalen

karena struktur lift barang ini termasuk karakteristik struktur gedung beraturan dengan tingkat < 10 dan tinggi struktur < 40 meter. Berikut adalah hasil analisis beban gempa dengan statik ekivalen yang dilampirkan dalam bentuk tabel.

Tabel 4. 9 Hasil analisis beban gempa statik ekivalen

Parameter	Simbol	Nilai	Satuan	Acuan
Kategori risiko		IV		SNI
				1726
Faktor keutamaan gempa	Le	1,5		SNI
(le)				1726
Percepatan dasar pada	S1	0,7		SNI 1726
periode 1 detik (S1)				1726 SNI
Percepatan dasar pada periode pendek (Ss)	Ss	0,7		1726
Kelas situs		В		PUSKIM
		D		PUSKINI
Faktor amlifikasi getaran terkait percepatan pada	Fa	1 1		SNI
1 1 1	га	1,1		1726
getaran periode pendek (Fa) Faktor amlifikasi getaran				
terkait percepatan yang				SNI
mewakili getaran periode 1	Fv	1,3		1726
detik (Fv)				1720
Parameter sprektum respons				
perecepatan pada periode	Sms	1		SNI
pendek (Sms)= Fa x Ss	OHIS	1		1726
Parameter sprektum respons				
perecepatan pada periode 1	Sm1	0,91		SNI
detik (Sm1)= Fv x S1	~1111	0,5 1		1726
Parameter respons spektral				
percepatan desain pada	G 1	0.51000000		SNI
periode pendek	Sds	0,513333333		1726
(Sds)=2/3*Sms				
Parameter respons spektral				
percepatan desain pada	C 11	0.0000000		SNI
periode 1 detik	Sd1	0,606666667		1726
(Sd1)=2/3*Sm1				
	T0	0,11		
Respon spektrum design	Ts	0,57	DIT	SKIM
Respon spektrum design	Pga	0,0595	r U	SKIIVI
	tl	16		
Koe	fisien resp	on seismik		
Koef. Modifikasi respons		4,5		SNI
(R)		→ ,J		1726
Cs dihitung dengan Cs =		0,023		SNI
(SDs/(R/le))	0,023			1726


Karena S1 lebihkecil dari 0,6 maka nilai Cs harustidak kurang dari (Cs > 0,01)	0,0004		SNI 1726
Nilai geser seismik (v)	0,01	kN	SNI 1726
Berat total bangunan + beban <i>car</i> dari SAP2000 (W)	64,89	kN	SNI 1726
Distribusi gaya gempa lateral			SNI 1726
Jumlah lantai (N)	3		SNI 1726
Ta	0,3	detik	SNI 1726
Koefisien K yang dipakai untuk struktur dengan Ta = 0,5 atau lebih kecil, maka nilai K =	1		SNI 1726

Tabel 4. 10 Beban gempa setiap lantai

Lantai	Wi (kN)	hi (m)	k	hi ^k	Wi*hi ^k	Cvx	Fx (kN)
1	26,76	4,25	1	4,25	113,76	0,21	0,00276
2	14,901	8,5	1	8,5	126,65	0,23	0,00308
3	23,22	12,75	1	12,75	296,07	0,55	0,0072
	Total				536,50139	1	0,01304

4.2.2 Permodelan

Berikut adalah model struktur lift barang yang didapatkan dari hasil perhitungan spesifikasi teknis. Gambar 4.1 merupakan model yang akan digunakan untuk analisi di aplikasi SAP2000.

Gambar 4. 1 Hasil permodelan lift barang dengan kapasitas lift 500 kg

Pada gambar diatas, permodelan lift barang dengan dimensi panjang (sumbu x) adalah 2,3 meter dan lebar (sumbu y) adalah 1,69 meter serta tinggi lift barang tersebut adalah 12,75 meter dengan tinggi masing-masing lantai adalah 4,25 meter. Pada setiap sambungan dari permodelan lift barang akan diasumsikan sebagai tumpuan jepit-jepit dimana ketika lift barang bergerak beban lift barang (kapasitas lift) akan tersalurkan melalui balok struktur yang kemudian diteruskan kekolom sampai pada *base* bawah. Simulasi pembebanan yang terjadi akan disimulasikan menggunakan SAP2000. Hal ini dilakukan untuk mengetahui perilaku struktur sebelum diaplikasikan di lapangan, dan dapat diteliti terlebih dahulu kemungkinan kegagalan struktur yang terjadi ketika disimulasikan langsung dilapangan. Komponen struktur lift barang dan spesifikasi material yang akan disajikan dalam bentuk tabel, seperti yang terlihat pada tabel berikut.

Tabel 4. 11 Komponen struktur lift barang

No.	Elemen	Keterangan
1.	Balok dan kolom	Struktur rangka lift barang akan menggunakan material baja IWF dengan dimensi kolom adalah 200 x 200 x 8 x 12 dan balok 150 x 100 x 6 x 9
2.	Bresing	Sistem pengaku lateral menggunakan profil IWF 150 x 100 x 6 x 9 dengan konfigurasi bresing adalah V terbalik.
3.	Base Plate	Terdapat 4 buah <i>base plate</i> sebagai tumpuan dari struktur rangka kolom lift barang tersebut
4.	Angkur	Terdapat 4 buah angkur untuk setiap <i>base plate</i> dengan diameter angkur adalah 10 mm.
5.	Pedestal	Terdapat pedestal dibawah <i>base plate</i> dengan dimensi 350 x 350 mm
6.	Pile Cap	Terdapat <i>Pile Cap</i> dibawah pedestal dengan dimensi 600 x 600 mm
7.	Pondasi	Bored pile diameter 300 mm

Tabel 4. 12 Mutu material

No.	Elemen	Mutu material
		$f_v = 400 \text{ Mpa}$
1.	Balok dan kolom	$f_u = 240 \text{ Mpa}$
		$f_y = 250Mpa$
2.	Pelat baja (sambungan)	$f_u = 410 Mpa$
3.	Baut	A325
4.	Lantai Beton	$f'_c = 22 \text{ Mpa}$
5.	Fasad	Aluminium Composite Panel
6.	Atap	Pelat bordes
7.	Pedestal	$f'_c = 22 \text{ Mpa}$
-		$f_v = 400 Mpa$
8.	Angkur	$f_u = 500 Mpa$
		Hilti RE 500 + HAS Size M12 HAS 5.8

4.2.3 Perhitungan Teoritis

Dalam mengetahui kapasitas suatu struktur rangka, terdapat beban-beban yang bekerja pada suatu struktur rangka tersebut. Sebagai indikator beban, dapat

digunakan simbol beban hidup dan beban mati yaitu L (*Live*) dan D (*Dead*). Beban-beban tersebut akan didapatkan dari hasil perhitungan.

Beban mati berasal dari *self mass* kerangka atau beban struktur sendiri dan beban hidup berasal dari beban rencana yang akan dibebankan pada kerangka, yaitu beban kapasitas lift barang dengan nilai 500 kg. Beban yang bekerja akan dimodelkan dengan beberapa kombinasi Struktur rangka akan di desain untuk menguji elemen balok, kolom, sistem pengaku lateral dan sambungan.

4.2.3.1 Analisis kontrol dinamis

Kontrol dinamis sebuah struktur terbagi menjadi lima bagian berdasarkan SNI 1726:2019 yaitu kontrol rasio partisipasi massa, kontrol periode fundamental struktur, kontrol gaya geser dasar, kontrol dual system, dan kontrol terhadap simpangan antar lantai (*drift*).

1. Kontrol berat struktur

Beban-beban yang dimasukkan kedalam permodelan berat struktur bangunan harus dipastikan sudah benar sehingga perlu dilakukan kontrol terlebih dahulu antara berat struktur yang ada di SAP-2000 dengan perhitungan manual dengan maksimal perbedaan hasil perhitungan adalah sebesar 5%. Hasil perhitungan berat struktur secara manual dan berat struktur hasil dari SAP2000 dapat dilihat pada tabel dibawah ini.

Tabel 4. 13 Berat struktur secara manual

Lantai	Berat	Satuan
All	55,2016006	kN
1	25,24128304	kN
2	14,5936503	kN
3	15,36666732	kN

Tabel 4. 14 Berat struktur dari SAP2000

GroupNa	SelfMa	SelfWeig	TotalMass	TotalMass	TotalMass
me	SS	ht	X	Y	Z
Text	KN-	WN I	KN-	KN-	KN-
	s2/mm	KN	s2/mm	s2/mm	s2/mm
ALL	0,00581	56,978	0,00581	0,00581	0,00581

GroupNa	SelfMa	SelfWeig	TotalMass	TotalMass	TotalMass
me	SS	ht	X	Y	Z
Т	KN-	ZNI	KN-	KN-	KN-
Text	s2/mm	KN	s2/mm	s2/mm	s2/mm
LANTAI 1	0,00273	26,768	0,00273	0,00273	0,00273
LANTAI 2	0,00151	14,901	0,001519	0,001519	0,001519
LANTAI 3	0,00156	15,309	0,001561	0,001561	0,001561

Tabel 4. 15 Selisih berat struktur manual dan SAP2000

	Bebar	n		
Elemen	Manual	SAP	Selisih	Selisih (%)
	(kN)	(kN)		
LANTAI 1	25,24128304	26,768	1,526716964	0,01526717
LANTAI 2	14,5936503	14,901	0,3073497	0,003073497
LANTAI 3	15,36666732	15,309	0,057667322	0,000576673
Total	55,20160066	56,978	1,891733986	0,01891734

Berdasarkan hasil analisis perhitungan diatas, terdapat perbedaan berat struktur dari perhitungan secara manual dan SAP2000. Berat total hasil perhitungan manual dari total seluruh lantai didapatkan sebesar 55,20 kN dan berat total dari program bantu SAP2000 diperoleh sebesar 56,978 kN. Dari hasil perhitungan didapatkan perbedaan sebesar 0,018 atau 1,8 %, dimana sesuai kontrol selisih berat struktur nilai hasil perhitungan harus kurang dari 5%. Karena nilai yang didadpatkan adalah 1,8 % maka hasil tersebut kurang dari 5 % sehingga dapat disimpulkan bahwa kontrol berat strukur lift barang ini aman.

2. Kontrol periode fundamental

Periode fundamental adalah waktu yang diperlukan untuk satu siklus getaran alami bangunan. SNI 1726:2019 menetapkan batasan pada periode fundamental untuk memastikan bahwa bangunan tidak terlalu fleksibel atau kaku, yang dapat mempengaruhi respons terhadap gempa. Periode fundamental ini harus dihitung dan dibandingkan dengan batasan yang ditetapkan untuk memastikan keamanan struktur. Hasil analisis periode fundamental dapat dilihat pada tabel dibawah ini.

Tabel 4. 16 Hasil analisis periode fundamental

Data	Nilai	Satuan
Tipe str	uktur (Rangka baja pen	nikul momen)
Ct	0,072	
X	0,8	
Ta min	0,55	detik
Koefisien Cu	1,4	
Ta max	0,77	detik
Ta SAP2000	0,2	detik

Nilai Tamax dan Tamin yang diperoleh sebesar 0,77 detik dan 0,55 detik. Kemudian nilai Ta hasil dari analisis SAP2000 adalah sebesar 0,2 detik. Ketiga nilai-nilai tersebut di kontrol untuk mengetahui apakah nilai-nilai tersebut memenuhi syarat atau tidak. Kontrol dilakukan dengan persamaan berikut:

Tamin < Tasap < Tamax

Pada perhitungan kontrol didapatkan bahwa nilai Ta SAP lebih besar dari Ta min dan lebih kecil dari Ta max. Sehingga, periode yang digunakan adalah periode SAP2000 (Tc) sebesar < 1,00 detik.

3. Kontrol partisipasi massa

Pada SNI 1726:2019 menetapkan bahwa total rasio partisipasi massa kumulatif untuk mode-mode getar yang relevan harus mencapai minimal 90%. Hal ini memastikan bahwa analisis dinamis mencakup respons signifikan dari struktur terhadap gempa.

Tabel 4. 17 Rasio partisipasi massa dari SAP2000

Case	ItemType	Item	Static	Dynamic
Text	Text	Text	Percent	Percent
Modal	Acceleration	UX	100	99,5047
Modal	Acceleration	UY	100	98,8518
Modal	Acceleration	UZ	99,9805	98,8495

4. Kontrol geser dasar seismik

Untuk menghitung geser dasar seismik diperlukan data-data berikut sebagai parameter yang diketahui dalam persamaan.

Tabel 4. 18 Parameter untuk menghitung geser seismik

Data	Nilai	Satuan
Le	1,5	-
R	4,5	-
SDs	0,07	-
SD1	0,04	-

Berdasarkan SNI 1726:2019 yang terdapat pada pasal 7.8.1 menyatakn bahwa nilai gaya geser seismik dalam arah yang ditetapkan harus ditentukan dengan menggunakan persamaan berikut.

$$V = C_S \times W$$

Nilai Cs dan W yang telah diperoleh kemudian dimasukan kedalam persamaan sebegai berikut

 $V = C_S \times W$

 $V = 0.023 \times 56.97 \text{ kN}$

V = 0.013 kN

4.2.3.2 Analisis balok

Analisis pada penampang balok dilakukan untuk mengetahui besarnya nilai kapasitas dari elemen tersebut. Pengecekan akan dilakukan terhadap kapasitas elemen dari gaya geser dan gaya momen lentur.

A. Penampang balok arah x

Data profil baja rencana yang digunakan dalam permodelan adalah baja profil IWF 150 x 100 x 6 x 9 mm, data perencanaan dapat dilihat pada tabel berikut.

- 1. Pengecekan kapasitas lentur penampang berdasarkan kekompakan penampang
 - Perbandingan lebar terhadap tebal sayap (*flage*) :

$$\lambda = \frac{b}{2 \times t_f} \le \lambda_p = 0.38 \sqrt{\frac{E}{f_y}}$$

$$\lambda = \frac{0.1}{2 \times 0.009} \le \lambda_p = 0.38 \sqrt{\frac{200000 \times 1000}{240 \times 1000}}$$

$$\lambda = 5.5 \le \lambda_p = 346.89$$

$$\lambda_r = 1.0 \sqrt{\frac{E}{f_y}} = 1.0 \sqrt{\frac{200000 \times 1000}{240 \times 1000}} = 912.87$$

Karena $\lambda \le \lambda_p \le \lambda_r$ maka profil sayap tergolong kompak.

- Perbandingan lebar terhadap tebal badan (web):

$$h = H - 2r - 2t_f$$

$$h = 148 - 2(9) - 2(6)$$

$$h = 118 \text{ mm}$$

$$h = 0.118 \text{ m}$$

$$\lambda = \frac{h}{t_w} \le \lambda_p = 3.76 \sqrt{\frac{E}{f_y}}$$

$$\lambda = \frac{0.118}{6} \le \lambda_p = 3.76 \sqrt{\frac{200000 \times 1000}{240 \times 1000}}$$

$$\lambda = 19,66 \le \lambda_p = 3432$$

$$\lambda_{r} = 5.7 \sqrt{\frac{E}{f_{y}}} = 5.7 \sqrt{\frac{200000 \times 1000}{240 \times 1000}} = 5203$$

Karena $\lambda \leq \lambda_p \leq \lambda_r$ maka profil badan (web) tergolong kompak.

2. Pengecekan kapasitas lentur penampang berdasarkan panjang bentang

Pengecekan panjang bentang dilakukan dengan membagi bentang menjadi tiga bagian, yaitu bentang pendek, menengah dan bentang panjang. Panjang bentang penampang balok (L) adalah 1690 mm.

- L_p (bentang pendek):

$$L_{p}=1,76\times r_{y}\sqrt{\frac{E}{f_{y}}}$$

$$L_p = 1,76 \times 0,023,7 \sqrt{\frac{200000 \times 1000}{240 \times 1000}}$$

 $L_p = 38,07 \text{ m}$

- L_r (bentang panjang):

$$L_{r}=1,9\times r_{ts}\left[\left(\frac{E}{0,7\times f_{y}}\right)\times\sqrt{\left(\frac{J}{S_{x}\times h}\right)+\sqrt{\left(\frac{J}{S_{x}\times h}\right)^{2}+6,76\left(\frac{0,7\times f_{y}}{E}\right)^{2}}}\right]$$

Untuk mencari nilai r_{ts} digunakan persaman berikut dalam pengecekan faktor panjang bentang:

$$\begin{split} r_{ts} &= \sqrt{r_{ts}^2} \\ r_{ts}^2 &= \sqrt{\frac{I_y \times C_w}{S_x}} \\ r_{ts}^2 &= \sqrt{\frac{(1510000 \times 10^{-12}) \times 0,000000000072}{68000 \times 10^{-9}}} \\ r_{ts} &= 0,039 \text{ m} \\ C_w &= \frac{I_y \times h_o^2}{S_x} \\ C_w &= \frac{(1510000 \times 10^{-12}) \times 0,139^2}{68000 \times 10^{-9}} \\ C_w &= 0,00000000072 \text{ m}^6 \\ h_0 &= H - \left(2 \times \frac{1}{2} \times t_f\right) \\ h_0 &= 148 - \left(2 \times \frac{1}{2} \times 9\right) \\ h_0 &= 139 \text{ mm}^2 \\ h_0 &= 0,139 \text{ m}^2 \\ J &= \frac{\left(2 \times b \times t_f^3\right) + (d \times t_w^3)}{3} \end{split}$$

$$=\frac{1}{3}(2\times100\times9)+(148\times6^3)$$

 $J = 0.000000058 \text{ m}^4$

$$L_r = 1.9 \times r_{ts} \left[\left(\frac{E}{0.7 \times f_y} \right) \times \sqrt{\left(\frac{J}{S_x \times h} \right) + \sqrt{\left(\frac{J}{S_x \times h} \right)^2 + 6.76 \left(\frac{0.7 \times f_y}{E} \right)^2}} \right]$$

$$=10,30 \text{ m}$$

- Pengecekan bentang:

$$L_b < L_p$$

$$2,23 < 38 \text{ m}$$

Setelah dilakukan perhitungan diatas, didapatkan bahwa penampang balok melintang tersebut termasuk kedalam bentang pendek karena $L_b < L_p$.

3. Menghitung momen nominal penampang

Momen nominal pada penampang bentang panjang dihitung menggunakan persamaan :

- Persamaan yang dipakai untuk mencari nilai M_n adalah sebagai berikut.

$$C_{b} = \frac{12,5 \times M_{maks}}{2,5 M_{maks} + 3 M_{A} + 4 M_{B} + 3 M_{C}}$$

$$C_{b} = \frac{12,5 \times 22,66}{(2,5 \times 22,66) + (3 \times 14,90) + (4 \times 22,66) + (3 \times 15,54)}$$

$$C_{b} = 0,55$$

- Pengecekan nilai Mn:

$$M_p = M_n = F_v \times Z_x$$

$$M_p = M_n = 33120 \text{ kNm}$$

$$M_n = C_b \left[M_p - (M_p - 0.7 f_y S_x) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right]$$

$$M_n = 18519 \text{ kNm}$$

Berdasarkan perhitungan momen nominal yang telah dilakukan yaitu:

$$M_{n1} = 33120 \text{ kNm}$$

 $M_{n2} = 18519 \text{ kNm}$ Maka nilai Mn yang dipakai untuk kontrol adalah nilai Mn terkecil yaitu 18519 kNm.

$$\emptyset M_n \ge M_u$$

$$0.9 \times 18519 \text{ kNm} \ge 22,66 \text{ kNm}$$

 $16667 \text{ kNm} \ge 54,89 \text{ kNm (OK)}$

4. Menghitung kapasitas geser

Untuk menghitung kapasitas geser, diperlukan perhitungan luas penampang dan tahanan geser. Persamaan yang dipakai dapat dilihat pada perhitungan dibawah ini :

$$A_w = t_w \times h_f$$
 $A_w = 148 \times 6$
 $A_w = 888 \text{ mm}^2$
 $A_w = 0.888 \text{ m}^2$
 $\emptyset V_n = 0.6 \times f_y \times A_w \times C_v$
 $\emptyset V_n = 0.9(0.6 \times (240 \times 1000) \times 0.888 \times 1)$
 $\emptyset V_n = 115084 \text{ kN}$
 $\emptyset V_n > V_u$
 $115084 \text{ kN} > 57.90 \text{ kN}$ (OK)

5. Kontrol lendutan

$$\begin{split} &\Delta_{maks} < \Delta_{ijin} \\ &\frac{5ML^2}{48EI} < \frac{l}{360} \\ &\frac{5 \times 22,66 \times 2,23^2}{48 \times (200000 \times 1000) \times (10200000 \times 10^{-12})} < \frac{2,23}{360} \\ &0,0013 < 0,0061 \text{ m} \qquad (OK) \end{split}$$

Berdasarkan hasil perhitungan diatas, dapat disimpulkan bahwa kapasitas momen pada balok dapat menahan momen yang bekerja pada elemen tersebut.

B. Penampang balok arah y

Data profil baja rencana yang digunakan dalam permodelan adalah baja profil IWF 150 x 100 x 6 x 9 mm, data perencanaan dapat dilihat pada tabel berikut.

- 1. Pengecekan kapasitas lentur penampang berdasarkan kekompakan penampang
 - Perbandingan lebar terhadap tebal sayap (flage):

$$\lambda = \frac{b}{2 \times t_f} \le \lambda_p = 0.38 \sqrt{\frac{E}{f_y}}$$

$$\lambda = \frac{0.1}{2 \times 0.009} \le \lambda_p = 0.38 \sqrt{\frac{200000 \times 1000}{240 \times 1000}}$$

$$\lambda = 5.5 \le \lambda_p = 346.89$$

$$\lambda_r = 1.0 \sqrt{\frac{E}{f_y}} = 1.0 \sqrt{\frac{200000 \times 1000}{240 \times 1000}} = 912.87$$

Karena $\lambda \le \lambda_p \le \lambda_r$ maka profil sayap tergolong kompak.

- Perbandingan lebar terhadap tebal badan (web):

$$h = H - 2r - 2t_f$$

$$h = 148 - 2(9) - 2(6)$$

$$h = 118 \text{ mm}$$

$$h = 0.118 \text{ m}$$

$$\lambda = \frac{h}{t_w} \le \lambda_p = 3.76 \sqrt{\frac{E}{f_y}}$$

$$\lambda = \frac{0.118}{6} \le \lambda_p = 3.76 \sqrt{\frac{200000 \times 1000}{240 \times 1000}}$$

$$\lambda = 19,66 \le \lambda_p = 3432$$

$$\lambda_{r} = 5.7 \sqrt{\frac{E}{f_{y}}} = 5.7 \sqrt{\frac{200000 \times 1000}{240 \times 1000}} = 5203$$

Karena $\lambda < \lambda_p \le \lambda_r$ maka profil badan (web) tergolong kompak.

2. Pengecekan kapasitas lentur penampang berdasarkan panjang bentang

Pengecekan panjang bentang dilakukan dengan membagi bentang menjadi tiga bagian, yaitu bentang pendek, menengah dan bentang panjang. Panjang bentang penampang balok (L) adalah 1690 mm.

- L_p (bentang pendek):

$$L_{p}=1,76\times r_{y}\sqrt{\frac{E}{f_{y}}}$$

$$L_p=1,76\times0,023,7\sqrt{\frac{200000\times1000}{240\times1000}}$$

$$L_p = 38,07 \text{ m}$$

- L_r (bentang panjang):

$$L_r = 1.9 \times r_{ts} \left[\left(\frac{E}{0.7 \times f_y} \right) \times \sqrt{\left(\frac{J}{S_x \times h} \right) + \sqrt{\left(\frac{J}{S_x \times h} \right)^2 + 6.76 \left(\frac{0.7 \times f_y}{E} \right)^2}} \right]$$

Untuk mencari nilai r_{ts} digunakan persaman berikut dalam pengecekan faktor panjang bentang:

$$\begin{split} r_{ts} &= \sqrt{r_{ts}^2} \\ r_{ts}^2 &= \sqrt{\frac{I_y \times C_w}{S_x}} \\ r_{ts}^2 &= \sqrt{\frac{(1510000 \times 10^{-12}) \times 0,000000000072}{68000 \times 10^{-9}}} \\ r_{ts} &= 0,039 \text{ m} \\ C_w &= \frac{I_y \times h_o^2}{S_x} \\ C_w &= \frac{(1510000 \times 10^{-12}) \times 0,139^2}{68000 \times 10^{-9}} \\ C_w &= 0,00000000072 \text{ m}^6 \\ h_0 &= H - \left(2 \times \frac{1}{2} \times t_f\right) \\ h_0 &= 148 - \left(2 \times \frac{1}{2} \times 9\right) \\ h_0 &= 139 \text{ mm}^2 \\ h_0 &= 0,139 \text{ m}^2 \\ J &= \frac{\left(2 \times b \times t_f^3\right) + (d \times t_w^3)}{3} \\ &= \frac{1}{3} (2 \times 100 \times 9) + (148 \times 6^3) \end{split}$$

 $J = 0.000000058 \text{ m}^4$

$$L_{r}=1.9 \times r_{ts} \left[\left(\frac{E}{0.7 \times f_{y}} \right) \times \sqrt{\left(\frac{J}{S_{x} \times h} \right) + \sqrt{\left(\frac{J}{S_{x} \times h} \right)^{2} + 6.76 \left(\frac{0.7 \times f_{y}}{E} \right)^{2}} \right]$$

$$=10.30 \text{ m}$$

- Pengecekan bentang:

$$L_b < L_p$$

2,23 < 38 m

Setelah dilakukan perhitungan diatas, didapatkan bahwa penampang balok melintang tersebut termasuk kedalam bentang pendek karena $L_b < L_p$.

3. Menghitung momen nominal penampang

Momen nominal pada penampang bentang panjang dihitung menggunakan persamaan :

- Persamaan yang dipakai untuk mencari nilai M_n adalah sebagai berikut.

$$C_{b} = \frac{12,5 \times M_{maks}}{2,5 M_{maks} + 3 M_{A} + 4 M_{B} + 3 M_{C}}$$

$$C_{b} = \frac{12,5 \times 22,66}{(2,5 \times 22,66) + (3 \times 14,90) + (4 \times 22,66) + (3 \times 15,54)}$$

$$C_{b} = 1,18$$

- Pengecekan nilai Mn:

$$\begin{split} M_p &= M_n = F_y \times Z_x \\ M_p &= M_n = 33120 \text{ kNm} \\ M_n &= C_b \left[M_p - (M_p - 0.7 f_y S_x) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \end{split}$$

Berdasarkan perhitungan momen nominal yang telah dilakukan yaitu:

$$M_{n1} = 33120 \text{ kNm}$$

 $M_n = 39241 \text{ kNm}$

 $M_{n2} = 39241 \text{ kNm}$ Maka nilai Mn yang dipakai untuk kontrol adalah nilai Mn terkecil yaitu 33120 kNm.

$$\emptyset M_n \ge M_u$$

 $0.9 \times = 33120 \text{ kNm} \ge 22,66 \text{ kNm}$
 $29808 \text{ kNm} \ge 22,66 \text{ kNm}$ (OK)

4. Menghitung kapasitas geser

Untuk menghitung kapasitas geser, diperlukan perhitungan luas penampang dan tahanan geser. Persamaan yang dipakai dapat dilihat pada perhitungan dibawah ini :

$$A_w = t_w \times h_f$$
 $A_w = 148 \times 6$
 $A_w = 888 \text{ mm}^2$
 $A_w = 0.888 \text{ m}^2$
 $\emptyset V_n = 0.6 \times f_y \times A_w \times C_v$
 $\emptyset V_n = 0.9(0.6 \times (240 \times 1000) \times 0.888 \times 1)$
 $\emptyset V_n = 115084 \text{ kN}$
 $\emptyset V_n > V_u$
 $115084 \text{ kN} > 49,006 \text{ kN}$ (OK)

5. Kontrol lendutan

$$\begin{split} &\Delta_{maks} < \Delta_{ijin} \\ &\frac{5ML^2}{48EI} < \frac{l}{360} \\ &\frac{5 \times 22,66 \times 2,23^2}{48 \times (200000 \times 1000) \times (10200000 \times 10^{-12})} < \frac{2,23}{360} \\ &0,003 < 0,004 \text{ m} \qquad (OK) \end{split}$$

Berdasarkan hasil perhitungan diatas, dapat disimpulkan bahwa kapasitas momen pada balok dapat menahan momen yang bekerja pada elemen tersebut.

Tabel 4. 19 Gaya dalam dan hasil analisis balok

		Momen lentur		Kontro 1	Tahanan geser		Kontrol	
Kode	Mn	Mu	ФМп	Mu <	Vn	Vu	ΦVn	Vu <
	kN-m	kN-m	kN-m	ΦMn	kN	kN	kN	Ф.Vn
B1-1	18519	54,8963	16667,1	OK	127872	57,901	115085	OK
B1-2	39242	22,6615	29808	OK	127872	49,006	115085	OK
B1-3	18519	54,8963	16667,1	OK	127872	57,901	115085	OK
B1-4	39242	22,6615	29808	OK	127872	49,006	115085	OK
B2-1	16005,7	34,3084	14405,1	OK	127872	38,427	115085	OK
B2-2	39291,1	12,8181	29808	OK	127872	33,159	115085	OK
B2-3	16005,7	34,3084	14405,1	OK	127872	38,427	115085	OK

	Momen lentur		Kontro 1	T	ahanan ges	er	Kontrol	
Kode	Mn	Mu	ФМп	_ Mu <	Vn	Vu	ΦVn	
	kN-m	kN-m	kN-m	ФМп	kN	kN	kN	Ф.Vn
B2-4	39291,1	12,8181	29808	OK	127872	33,159	115085	OK
B3-1	6435,34	48,9273	5791,8	OK	127872	86,092	115085	OK
B3-2	1913,61	45,6239	1722,25	OK	199800	72,936	179820	OK
B3-3	6435,34	48,9273	5791,8	OK	127872	86,092	115085	OK
B3-4	1913,61	45,6239	1722,25	OK	199800	72,936	179820	OK

Tabel 4. 20 Hasil analisis lendutan balok

Kode	Lend	utan	Kontrol
Kode	Δ ijin	Δmax	— Δmaks< Δizin
	m	m	Δπακ3 > ΔιΖιπ
B1-1	0,006	0,001	OK
B1-2	0,005	0,003	OK
B1-3	0,00619	0,00139	OK
B1-4	0,00469	0,0033	OK
B2-1	0,006	0,001	OK
B2-2	0,005	0,002	OK
B2-3	0,00619	0,00087	OK
B2-4	0,00469	0,00187	OK
B3-1	0,006	0,001	OK
B3-2	0,005	0,004	OK
B3-3	0,00619	0,00124	OK
B3-4	0,00469	0,00375	OK

4.2.3.3 Analisis kolom

Pada elemen kolom akan dilakukan perhitungan terhadap kapasitas elemen tarik aksial, tekan aksial, momen lentur dan geser lentur. Perhitungan ini dilakukan untuk pengecekan kapasitas kolom yang terdapat pada kerangka guna mengetahui besar nilai kapasitas penampang.

- 1. Pengecekan kapasitas lentur penampang berdasarkan kekompakan penampang
 - Perbandingan lebar terhadap tebal sayap (flage):

$$\lambda = \frac{b}{2 \times t_f} \le \lambda_p = 0.38 \sqrt{\frac{E}{f_y}}$$

$$\lambda = \frac{200}{2 \times 12} \le \lambda_p = 0.56 \sqrt{\frac{200000}{240}}$$

$$\lambda = 8.33 \le \lambda_p = 511$$

Karena $\lambda < \lambda_p$ maka profil sayap tergolong non langsing

- Perbandingan lebar terhadap tebal badan (web):

$$h = H - 2r - 2t_f$$

$$h = 200 - 2(12) - 2(8)$$

$$h = 150 \text{ mm}$$

$$h = 0.15 \text{ m}$$

$$\lambda = \frac{h}{t_w} \le \lambda_p = 3.76 \sqrt{\frac{E}{f_y}}$$

$$\lambda = \frac{200}{8} \le \lambda_p = 1{,}49\sqrt{\frac{200000}{240}}$$

$$\lambda = 0.025 \le \lambda_p = 136$$

Karena $\lambda < \lambda_p$ maka profil badan (web) tergolong non langsing.

- 2. Kuat tarik pada penampang
 - Untuk kuat leleh tarik pada penampang bruto

$$P_n = f_y \times A_g$$

$$P_n = 240 \times 6353$$

$$P_n = 1524 \; kN$$

$$\frac{P_n}{\Omega} = \frac{1524}{1,67} = 913 \text{ kN}$$

- Untuk keruntuhan tarik pada penampang netto (fraktur)

$$P_n = f_y \times A_g$$

$$P_n = 370 \times 6353$$

$$P_n = 2350 \; kN$$

$$\frac{P_n}{\Omega} = \frac{2350}{2} = 1175 \text{ kN}$$

- Kontrol Kuat tarik aksial

$$P_u = 621 \text{ kN}$$

$$\frac{P_n}{O} > P_u$$

$$1175 \text{ kN} > 621 \text{ kN (OK)}$$

- 3. Kontrol tekan aksial
 - Panjang efektif

$$\frac{L_c}{r} = \frac{k_c \times L}{r}$$

$$= \frac{0.65 \times 4250}{13}$$

$$= 55.02 \text{ m}$$

$$4,71 \times \sqrt{\frac{200000}{240}}$$

$$= 4299 \text{ m}$$

$$\frac{L_c}{r} > 4,71 \times \sqrt{\frac{E}{f_y}}$$

- Tegangan kritis

$$Fe = \frac{\pi^2 \times E}{\left(\frac{k_c \times L}{r}\right)^2}$$

$$F_{cr} = 0.877 \times f_e$$

= 205690

$$P_n = F_{cr} \times A_g$$
$$= 1306 \text{ kN}$$

$$\frac{P_n}{\Omega} = \frac{1306}{1.67} = 1176 \text{ kN}$$

- Kontrol Kuat tarik aksial

$$P_{\rm u} = 621,57 \; \rm kN$$

$$\frac{P_n}{\Omega} > P_u$$

$$1176 \text{ kN} > 621,57 \text{ kN} \text{ (OK)}$$

- 4. Interaksi tekan aksial dan momen lentur
 - Klasifikasi penampang
 - a. Perbandingan lebar terhadap tebal sayap (flage):

$$\lambda = \frac{b}{2 \times t_f} \le \lambda_p = 0.38 \sqrt{\frac{E}{f_y}}$$

$$\lambda = 8.3 \le \lambda_p = 346$$

Karena $\lambda < \lambda_p$ maka profil sayap tergolong kompak

b. Perbandingan lebar terhadap tebal badan (web):

$$\lambda = \frac{h}{t_w} \le \lambda_p = 3.76 \sqrt{\frac{E}{f_y}}$$

$$\lambda = 0.025 \le \lambda_p = 3432$$

Karena $\lambda\,<\,\lambda_p\,$ maka profil badan (web) tergolong kompak.

- Tekuk torsi lateral
- a. Bentang pendek (L_p)

$$\lambda_{\rm p} = 1.76 \sqrt{\frac{\rm E}{f_{\rm y}}}$$

$$L_p = 1.76 \sqrt{\frac{200000}{240}}$$

b. Bentang panjang (L_r)

$$h_0 = H - \frac{1}{2} \times t_f$$

$$=200-\frac{1}{2}\times 12$$

$$= 0,188 \text{ m}$$

$$C_w = \frac{I_x \times h_0^2}{4}$$

$$C_w = \frac{472000000 \times 188^2}{4}$$

$$C_w = 1.4 \text{ mm}^6$$

$$C_w = 0.00000014 \text{ m}^6$$

$$r_{ts}^2 = \frac{\sqrt{I_y \times C_w}}{S_x}$$

$$= \frac{\sqrt{1600000 \times 1,4}}{314666,66}$$

$$= 0,069$$

$$J = \frac{(2 \times B t_f^2) + (H \times t_w^3)}{3}$$

$$= \frac{(2 \times 200 \times 12^2) + (200 \times 8^2)}{3}$$

$$= 27682406400 \text{ N/mm}^2$$

 $= 0.000000000000027 \text{ kN/m}^2$

 L_{r}

= 1,95
$$r_{ts} \frac{E}{0.7 \times f_y} \sqrt{\left(\frac{j}{S_x \times h_o}\right) + \sqrt{\left(\frac{j}{S_x \times h_o}\right)^2 + 6.76 \left(\frac{0.7 \times f_y}{E}\right)^2}}$$

= 7,3 m

Cek bentang

$$L_p \le L_b \le L_r$$

$$2550 \text{ mm} \le 4250 \text{ mm} \le 4638199,38 \text{ mm}$$
 (OK)

Sehingga bentang termasuk kedalam kategori bentang menengah Selanjutnya dilakukan perhitungan terhadap nilai C_b sebagai berikut.

$$C_b = 0.05$$

Sehingga nilai momen nominal yang diperoleh pada kondisi lateral torsional buckling (LTB) sebagai berikut.

$$M_n = f_{cr} \times A_g$$

= 205,69 × 2716
= 1306753742 Nmm
= 1306 kNm

$$M_n = C_b \left[M_p - \left(M_p - 0.7 f_y S_x \right) \left(\frac{L_r - L}{L_r - L_p} \right) \right] \le M_p$$

Cek nilai M_n :

$$M_n = M_p$$
 $M_n = f_y \times Z_x$
 $= 240 \times 472000$
 $= 113280000 \text{ Nmm}$
 $= 113,28 \text{ kNm}$

$$\emptyset M_n = 101,95$$

- Kontrol momen

Berdasarkan momen nominal yang telah didapatkan sebelumnya, maka dilakukan kontrol momen dengan menggunakan persamaan sebagai berikut.

 $\emptyset M_n \ge M_u$ 101,95 kNm \ge 36,62 kNm (OK)

Tabel 4. 21 Gaya dalam aksial dan hasil analisis kolom

	Tarik aksial			Kontro 1	7	Гекап aksia	1	Kontrol
Kode	Pu	Pn	Pn/Ω	Pn/Ω>	Pu	Pn	Pn/Ω	Pn/Ω>P
	kN	kN	kN	Pu	kN	kN	kN	u
K1	1175,31	1524,72	1177,22	OK	1176,08	1306,75	1177,22	OK
K2	621,571	2350,61	1175,31	OK	621,571	1306,75	1176,08	OK
K3	200,969	2350,61	1175,31	OK	200,969	1306,75	1176,08	OK

4.2.3.4 Analisis pengaku lateral (bresing)

Setelah dilakukan permodelan terhadap sisitem pengaku lateral pada software SAP200, selanjutnya dilakukan kontrol kapasitas penampang. Pada pembahasan ini digunakan salah satu contoh perhitungan, dengan data perhitungan sebagai berikut.

Tabel 4. 22 Data perhitungan

Gaya Dalam	
Nilai	Satuan
183,68	kN
273	kN
5,79	kN
2,62	kNm
Data Penampang	
148	mm
100	mm
6	mm
9	mm
11	mm
2684	mm2
21,1	kg/m
10200000	mm4
	Nilai 183,68 273 5,79 2,62 Data Penampang 148 100 6 9 11 2684 21,1

Iy	1510000	mm4
rx	61,7	mm
ry	23,7	mm
Zx	138000	cm3
Zy	30100	cm3
Sx	68000	mm3
Sy	20133,3333	mm3
Е	200000	N/mm2
	Mutu Baja A37	
Fy	240	Mpa
Fu	370	Mpa

1. Kontrol kapasitas tegangan

a. Konfigurasi breis

$$\frac{V}{\cos \alpha} = \frac{5,79}{0,22}$$

$$\frac{V}{\cos \alpha} = 26,32 \text{ kN}$$

$$Pr = 1,5 \times 26,32$$

$$Pr = 39,49 \text{ kN}$$

b. Stress Increase

$$Pe = \frac{Pr}{1,33}$$

$$Pe = \frac{39,49}{1,33}$$

$$Pe = 29,69 \text{ kN}$$

$$F = \frac{Pe}{A \times 0,155}$$

$$F = \frac{29,69}{26,84 \times 0,155}$$

$$F = 11062 \text{ kN/m}^2$$

c. Kapasitas Tegangan

$$Ft = 0.6 \times (fy \times 0.014223)$$

$$Ft = 143996 \text{ kN/m}^2$$

$$Ft > F$$

$$143996 > 11062 \text{ kN/m}^2 \quad (OK)$$

2. Kontrol Kelangsingan

Dilakukan perhitungan kontrol rasio kelangsingan berdasarkan SNI 7860 tahun 2020 tentang ketentuan seismik untuk bangunan gedung pada bab F sebagai berikut :

$$\frac{L_c}{ry} \le 4,71 \sqrt{\frac{E}{f_y}}$$

$$\frac{L_c}{r} = \frac{k_c \times L}{r}$$

$$\frac{L_c}{ry} = 1,55$$

$$4,71 \ \sqrt{\frac{E}{f_y}} = 115,47$$

3. Kontrol Kuat Tekan

$$\frac{K \times L}{r} \leq \frac{2625}{\sqrt{fy}}$$

$$\lambda_{X} = \frac{K \times L}{rx}$$

$$\lambda x = 155,27$$

$$\lambda y = \frac{K \times L}{ry}$$

$$\lambda y = 59,64$$

Maka nilai yang digunakan adalah yang terbesar dari keduanya, sehingga:

$$\frac{K \times L}{r} \leq \frac{2625}{\sqrt{fy}}$$

$$\lambda c = \frac{\lambda}{\pi} \times \sqrt{\frac{fy}{E}}$$

$$\lambda c = 0.036$$

$$\omega = \frac{1,43}{1,6-0,67 \times \lambda c}$$

$$\omega = 0.90$$

Sehingga didapatkan kuat tekan nominal sebesar:

$$Pn = Ag \times \frac{fy}{\omega}$$

$$Pn = 709,59 \text{ kN}$$

Maka,

 φ Pn \leq Pu tekan

 $183,68 \le 603,15$ (OK)

4. Kontrol Kuat Tarik

$$P max = Ry \times Fy \times Ag$$

$$P \text{ max} = 966,24$$

Kuat rencana:

- Leleh

$$\varphi$$
Pn = 0,9×fy×Ag

$$\varphi Pn = 579,74$$

- Putus

Untuk mencari nilai Ae atau luas efektif, perlu direncanakan diameter baut terlebih dahulu dimana diameter baut rencana adalah 16 mm, sehingga:

D lubang = D baut + 0.15 cm

D lubang = 1,75 cm

Luas perlemahan, direncanakan terdapat 2 baris baut di pelat badan dan pelat sayap penampang breis.

- Sayap

Sayap =
$$4 \times D$$
 baut $\times tf$

Sayap
$$= 6.3$$

- Badan

Badan = $4 \times D$ baut $\times tw$

Badan = 2,1

Maka didapatkan luas penampang efektif sebagai berikut.

$$An = Ag-L_{badan}-L_{sayap}$$

$$An = 18.44 \text{ cm}^2$$

$$Ae = U \times An$$

$$Ae = 18,44 \text{ cm}^2$$

Maka didapatkan nilai kuat rencana putus sebagai berikut.

$$\varphi$$
Pn = 511,71

φPn ≤ P tarik 273,85 ≤ 511,71 (OK)

Tabel 4. 23 Hasil Analisis Kapasitas Penampang Bresing

	Ak	Aksial		Momen	Ni	Nilai kuat rencana putus		
Kode	Tekan	Tarik	Vu	Mu	φPn	φPn		
					ı	(terkecil)	KONTROL	
1-Y	kN	kN	kN	kN	kN	kN		
1-X	183,688	273,855	5,792	2,6028	511,70	511,70	OK	
2-Y	333,178	516,199	7,412	8,6152	511,70	511,70	OK	
2-X	138,295	223,172	5,456	1,6269	511,70	511,70	OK	
3-Y	254,883	340,91	6,853	3,276	511,70	511,70	OK	
3-X	94,64	157,189	5,224	1,7346	511,70	511,70	OK	
1-Y	66,587	280,187	8,191	3,9983	511,70	511,70	OK	

4.2.3.5 Analisis pelat

Pelat hanya dirancang untuk memikul gaya lentur, sehingga tidak diperlukan penambahan sengkang karena pelat tidak pernah mengalami kegagalan geser. Gaya geser dengan kontribusi dari beton, sudah cukup untuk menahan gaya geser pada pelat karena lebar pelat yang memadai menghasilkan nilai yang besar. Desain tulangan lentur pada pelat mengikuti metode yang sama seperti desain tulangan pada balok, dengan satu perbedaan utama pada sisi lebar. Tulangan pada pelat dirancang setiap satu meter, dengan pemilihan desain tulangan pada saat momen positif dan momen negatif mencapai nilai maksimum.

A. Menghitung Luas Penampang Minimum (A_{s min})

Mengacu pada SNI 2487-2019, untuk menghitung nilai minimum yang digunakan adalah menggunakan nilai terbesar diantara kedua persyaratan berikut.

$$A_{s min} = \frac{0.25\sqrt{fc'}}{f_y} \times b_{eff} \times H$$

$$A_{s min} = 0.0014 \times b_{eff} \times H$$

Berdasarkan persamaan diatas kemudian dilakukan perhitungan nilai $A_{s\,min}$ sebagai berikut.

$$A_{s min} = \frac{0,25\sqrt{22}}{420} \times 2230 \times 120$$

$$A_{s min} = 481,68 mm^2$$

$$A_{s \min} = \frac{1.4}{420} \times 2230 \times 120$$

$$A_{s min} = 374,64 \text{ mm}^2$$

Dari kedua syarat tersebut, daimbil nilai terbesar yang digunakan sebagai nilai $A_{s min}$ yaitu sebesar 481,68 mm².

B. Menghitung luas tulangan (A_{sb})

Untuk menghitung luas tulangan actual dapat digunakan persamaan sebagai berikut.

$$A_{sb} = \frac{1}{4} \times \pi \times D^2$$

Berdasarkan persamaan diatas, dilakukan perhitungan sebagai berikut.

$$A_{\rm sb} = \frac{1}{4} \times 3.14 \times 10^2$$

$$A_{sb} = 78,5 \text{ mm}^2$$

Sehingga didapatkan nilai luas tulangan aktual pada tulangan longitudinal pelat atap yaitu sebesar 78,5 mm².

C. Menentukan jumlah tulangan

Untuk menghitung jumlah tulangan longitudinal yang diperlukan, dapat dilakukan melalui pendekatan trial and error dengan memeriksa kelayakan spasi minimum dan luas tulangan aktual yang harus memenuhi standar yang ditetapkan. Adapun persamaan yang digunakan dalam menentukan jumlah tulangan longitudinal adalh sebagai berikut.

$$n = \frac{A_s}{A_{sb}}$$

$$n = \frac{481,68}{78,5}$$

$$n = 6,13 buah$$

Dengan mengasumsikan jumlah tulangan yang digunakan sebanyak 6 tulangan (n = 6), maka dilakukan perhitungan luas tulangan sebagai berikut.

$$A_s = n \times A_{sb}$$

$$A_s = 6 \times 78,5$$

 $A_s = 481,68 \text{ mm}^2.$

Sehingga diperoleh nilai luas tulangan (A_s) pelat atap yaitu sebesar 281,68 mm². Kemudian, dilakukan pengecekan nilai luas tulangan terhadap luas penampang minimum seperti pada persamaan sebagai berikut.

$$A_{s} \ge A_{sb}$$
 $481,68 \ge 78,5 \text{ (OK)}$

Selanjutnya, dilakukan perhitungan jarak antar tulangan longitudinal dengan menggunakan persamaan sebagai berikut.

$$S = \frac{b - (2 \times d_c)}{n - 1}$$

Berdasrakan persamaan diatas kemudain dilakukan perhitungan sebagai berikut.

$$S = \frac{2230 - (2 \times 40)}{6 - 1}$$

$$S = 350,38 \text{ mm}$$

Sehingga didapatkan jarak antar tulangan longitudinal tekan antara satu dengan lainnya yaitu sebesar 140 mm. Setelah mendapatkan jarak tulangan longitudinal tekan, kemudian dapat dilakukan perhitungan jarak minimum tulangan dengan menggunakan persamaan sebagai berikut.

$$S_{min} = 2 \times d_b$$

$$S_{min} = 25 + d_b$$

Berdasarkan persamaan diatas, dilakukan perhitungan sebagai berikut.

$$S_{\min} = 2 \times 10$$

$$S_{min} = 20 \text{ mm}$$

$$S_{\min} = 25 + d_b$$

$$S_{\min} = 25 + 10$$

$$S_{\min} = 35 \text{ mm}$$

Dari kedua perhitungan diatas diambil jarak tulangan minimum yang terbesar pada pelat atap arah Y yaitu sebesar 35 mm. Selanjutnya, dilakukan pengecekan terhadap syarat jarak tulangan dimana jarak tulangan pakai (S) harus lebih besar atau sama dengan jarak tulangan minimum (S min) dengan menggunakan persyaratan sebagai berikut .

$$S \geq S_{min}$$

350,38 \geq 35 (OK)

Sehingga didapatkan kebutuhan jumlah tulangan lentur tekan sebanyak 6 tulangan.

D. Menghitung kapasitas momen akibat tulangan

Untuk menghitung kapasitas momen akibat tulangan digunakan persamaan sebagai berikut.

$$\emptyset M_{n} = \emptyset \left[A_{s} f_{y} \left(d - \frac{a}{2} \right) \right]$$

$$a = \frac{A_{s} \times f_{y}}{0.85 \times fc' \times b}$$

Berdasarkan persamaan diatas, dilakukan perhitungan sebagai berikut.

$$a = \frac{481,68 \times 420}{0,85 \times 22 \times 2230}$$

$$a = 4,85 \text{ mm}$$

$$\emptyset M_n = 0,9 \left[481,68 \times 420 \left(10 - \frac{4,85}{2} \right) \right]$$

$$\emptyset M_n = 11393223,92 \text{ Nmm}$$

$$M_u = 884,46 \text{ Nmm}$$

$$\emptyset M_n > M_u$$

11393223,92 Nmm > 9122,52 Nmm (OK)

Dari hasil perhitungan pelat diatas didapatkan 6 buah tulangan dengan jarak antar tulangan adalah 350 mm.

4.2.3.6 Analisis Sambungan

A. Sambungan Balok-Kolom

Sambungan balok dan kolom pada struktur lift barang ini tidak hanya dipengaruhi oleh gaya geser dan gaya tarik yang terjadi pada struktur tersebut tetapi juga dipengaruhi oleh mutu material balok, kolom, plat sambung serta mutu baut rencana. Pada perhitungan sambungan balok-kolom, diambil contoh perhitungan pada sambungan balok lantai atap (x) dan kolom lantai tiga. Berikut merupakan data-data yang diperlukan dalam analisis kapasitas sambungan balok-kolom dan langkah perhitungannya.

Tabel 4. 24 Mutu material

Mutu Material Baja Elemen Struktur Balok									
Keterangan	Simbol	Nilai	Satuan						
Tegangan Leleh	Fy	240	Mpa						
Tegangan Putus	fu	370	Mpa						
Mutu Material	Baja Elemen Stru	ıktur Kolom	•						
Keterangan	Simbol	Nilai	Satuan						
Tegangan Leleh	Fy	240	Mpa						
Tegangan Putus	fu	370	Mpa						
Mutu Material Ba	ja Elemen Plat Sa	mbung (BJ 37	<u>'</u>)						
Keterangan	Simbol	Nilai	Satuan						
Tegangan Leleh	Fy	240	Mpa						
Tegangan Putus	fu	370	Mpa						
Mutu Mater	rial Baut Sambun	g (A325)							
Keterangan	Simbol	Nilai	Satuan						
Kuat Tarik Nominal	fnt	620	Mpa						
Kuat Tarik Geser	fnv	372	Mpa						

Tabel 4. 25 Dimensi elemen

Data Dimensi Balok								
Keterangan	Simbol	Nilai	Satuan					
Panjang badan	$h_{\mathbf{w}}$	148	mm					
Panjang sayap	b_f	100	mm					
Tebal badan	$t_{\mathbf{w}}$	6	mm					
Tebal sayap	h_f	9	mm					
Momen inersia sb. x	$I_{\mathbf{x}}$	10200000	mm ⁴					
Momen inersia sb. y	I_y	1510000	mm ⁴					
Modulus elastisitas sb. x	S_x	61,7	mm ³					
Modulus elastisitas sb. y	S _y	23,7	mm^3					
Modulus plastis sb. x	Z_{x}	138000	mm ³					
Modulus plastis sb. y	Z _y	30100	mm ³					
Data	Dimensi Kolo	m						
Keterangan	Simbol	Nilai	Satuan					
Panjang badan	$h_{\mathbf{w}}$	200	mm					
Panjang sayap	b_f	200	mm					
Tebal badan	$t_{\mathbf{w}}$	8	mm					
Tebal sayap	h _f	12	mm					
Data Dir	mensi Baut dan	pelat						
Keterangan	Simbol	Nilai	Satuan					
Diameter baut	d _b	16	mm					
Tebal plat sambung	t_p	10	mm					

1. Menghitung pelat penyambung

$$\Phi R_n = 1 \times t_p \times f_u$$

$$= 0.75 \times 75 \times 9 \times 400$$

$$= 27000 \text{ N}$$

- Kuat leleh (f_v)

$$\phi R_n = 1 \times t_p \times f_y$$

$$= 0.75 \times 75 \times 9 \times 250$$

$$= 168750 \text{ N}$$

 $R_{\rm n}$ pada perhitungan ini yang dipakai adalah $R_{\rm n}$ dengnan nilai terkecil yaitu 168750 N.

- Kontrol geser

$$V_{\rm u} = 57,90 \, \text{kN}$$

$$R_n > V_u$$

$$168750 \text{ N} > 57,90 \text{ kN} \ (OK)$$

- 2. Jumlah baut
- Menghitung luas baut rencana

$$A_{bd} = \frac{1}{4} \times \pi \times db^2$$

$$A_{\rm bd} = \frac{1}{4} \times 3,14 \times 16^2$$

$$A_{bd} = 200,96 \text{ mm}^2$$

- Menghitung tahanan tarik baut

$$R_n = \emptyset \times A_{bd} \times F_{nt}$$

$$R_n = 0.75 \times 200.96 \times 620$$

$$R_n = 93,44 \text{ kN}$$

- Menghitung tahanan geser baut

$$R_n = \emptyset \times A_{bd} \times F_{nv}$$

$$R_n = 0.75 \times 200.96 \times 372$$

$$R_n = 56,06 \text{ kN}$$

- Menghitung tahanan tumpu

$$R_n = \emptyset \times d_b \times t_p \times f_u$$

$$R_n = 0.75 \times 16 \times 9 \times 400$$

$$R_n = 48 \text{ kN}$$

- Jumlah baut

 R_n pakai adalah R_n maksimum dari tahana tarik baut, tahanan geser baut dan tahanan tumpu yaitu 93,44 kN.

$$n = \frac{V_u}{R_n} \label{eq:n_def}$$

$$n = \frac{57,90}{93,44}$$

$$n = 0.61$$

$$n = 2 buah$$

- Jarak baut

$$S_{min} = 2,67 \times d_b$$

$$S_{\min} = 2,67 \times 16$$

$$S_{\min} = 42,72 \text{ mm}$$

$$S_{min}$$
Pakai = 43 mm

Karena diameter baut menggunakan diameter 16 mm, maka S1 yang dipakai adalah 22 mm.

$$P Pakai = S \times (n-1) + S1 + S1$$

P Pakai =
$$43 \times (2 - 1) + 22 + 22$$

P Pakai = 87 mm

- Kapasitas pelat

$$P = H - 2t_f$$

$$P = 148 - 2 \times 9$$

$$P = 130 \text{ mm}$$

Karena panjang pelat lebih besar dari panjang pakai, maka konfigurasi baut dapat dipakai satu baris.

3. Menghitung tahanan las

$$R_n = \emptyset \times f_u \times a \text{ las}$$

$$R_n = 0.75 \times 415 \times 2191$$

$$\emptyset R_n = 682167 \text{ kN}$$

Kontrol pada tahanan las dilakukan dengan membandingkan nilai Rn hitung dengan Rn SAP2000, dimana:

Tabel 4. 26 Hasil analisis sambungan baut

	Diameter	Jumlah	Jarak antar baut	Jarak tepi baut
Kode	baut	baut	S	S1
	mm	Buah	mm	mm
B1-1	16	2	43	22
B1-2	16	2	43	22
B1-3	16	2	43	22
B1-4	16	2	43	22
B2-1	16	2	43	22
B2-2	16	2	43	22
B2-3	16	2	43	22
B2-4	16	2	43	22
B3-1	16	2	43	22
B3-2	16	2	43	22
B3-3	16	2	43	22
B3-4	16	2	43	22
-				

Tabel 4. 27 Hasil analisis pelat penyambung

		Kuat fraktur	Kuat leleh		Kuat gasar		
	Pelat	(fu) (fy)		Kuat geser			
Kode	sambung	Rn	Rn	Da malrai	Vu	Rn>Vu	
		KII	KII	Rn pakai	SAP		
	mm	N	N	kN	kN	SAP	
B1-1	L90x90x10	270000	168750	168,75	41727,3	OK	
B1-2	L90x90x10	270000	168750	168,75	8794,02	OK	
B1-3	L90x90x10	270000	168750	168,75	49,0052	OK	
B1-4	L90x90x10	270000	168750	168,75	49,0052	OK	
B2-1	L90x90x10	270000	168750	168,75	38,4264	OK	
B2-2	L90x90x10	270000	168750	168,75	38,4264	OK	
B2-3	L90x90x10	270000	168750	168,75	33,1585	OK	
B2-4	L90x90x10	270000	168750	168,75	33,1585	OK	
B3-1	L90x90x10	270000	168750	168,75	86,0906	OK	
B3-2	L90x90x10	270000	168750	168,75	86,0906	OK	

B3-3	L90x90x10	270000	168750	168,75	72,9348	OK
B3-4	L90x90x10	270000	168750	168,75	72,9348	OK
BG	L90x90x10	270000	168750	168,75	72,9348	OK

B. Sambungan Bresing

Sambungan bresing baja merupakan bagian penting dalam struktur baja yang berfungsi menghubungkan elemen-elemen bresing (pengaku) dengan elemen utama seperti balok dan kolom, sehingga mampu menyalurkan gaya lateral dan menjaga stabilitas serta kekakuan struktur secara keseluruhan. Dalam perencanaannya, sambungan bresing harus dirancang agar mampu menahan gaya-gaya yang bekerja, baik dari beban gempa, angin, maupun beban lainnya, sehingga kegagalan sambungan dapat dihindari dan struktur tetap aman. Berikut merupakan hasil perhitungan analisis sambungan bresing, pada contoh perhitungan digunakan contoh sambungan pada bresing bawah yaitu sebagai berikut.

- 1. Sambungan pada batang bresing
- Kuat geser baut

$$\emptyset V_n = \emptyset \times A_{hd} \times F_{nv}$$

$$\emptyset V_n = 50,06 \text{ kN}$$

- Kuat tumpu baut

$$\emptyset V_n = \emptyset \times d_b \times t_p \times f_u$$

$$\emptyset V_n = 0.043 \text{ kN}$$

- Jumlah baut

$$n = \frac{P_u}{\emptyset V_n}$$

$$n = 3,27$$

$$n = 4$$
 buah

- Jarak baut

$$S_{\min} = 1.5 \times d_b$$

$$S_{min} = 0.0024 \text{ m}$$

$$S_{\text{maks}} = 4 \times t_p + 10 \text{ cm}$$

$$S_{\text{maks}} = 0.136 \text{ m}$$

$$S Pakai = 0,025 m$$

Kemudian dihitung jarak antar baut :

$$S_{1 \min} = 3 \times d_b$$

$$S_{1 \min} = 0.048 \text{ m}$$

$$S_{1 \text{ maks}} = 15 \times t_p$$

$$S_{1 \text{ maks}} = 0.135 \text{ m}$$

$$S_{1 \text{ pakai}} = 0.05 \text{ m}$$

Karena diameter baut menggunakan diameter 16 mm, maka S1 yang dipakai adalah 22 mm.

$$P Pakai = S \times (n-1) + S1 + S1$$

$$P Pakai = 0,175 m$$

- 2. Sambungan las sudut pada pelat buhul
- Kuat nominal las sudut

$$\emptyset R_{nw} = \emptyset \times te \times (0.6 \times Fe_{60})$$

$$\emptyset R_{nw} = 186750 \text{ kN/m}^2$$

- Lua las

$$A_{we} = L_{we} \times tebal las$$

$$A_{we} = 0.002 \text{ m}^2$$

- Tegangan yang terjadi pada las sudut

$$\cos\theta = \frac{b}{L}$$

$$Cos\theta = 1,106$$

$$Sin \theta = \frac{b}{L}$$

$$\sin \theta = 0.958$$

$$fh = \frac{Cos\theta \times Pu}{A_{we}}$$

$$fh = 93059 \text{ kN/m}^2$$

$$f_{V} = \frac{Sin\theta \times Pu}{A_{we}}$$

$$fv = 80578 \text{ kN/m}^2$$

$$f total = \sqrt{(fh^2) + (fv^2)}$$

$$f total = 123097 kN/m^2$$

- Tebal efektif las sudut

$$te \geq \frac{f_{total}}{\emptyset R_{nw}}$$

te
$$\geq 0.6$$

$$a = \frac{te}{0,707}$$

$$a = 0.01 \text{ m}$$

3. Kontrol tekuk pelat buhul

Lebar pelat buhul efektif yang dipakai adalah setinggi web bresing yaitu 150 mm.

$$r = \sqrt{\frac{I_{pelat}}{L}}$$

$$r = 0.000164$$

$$\lambda = \frac{L \text{ pelat}}{r}$$

$$\lambda = 13,26$$

$$\lambda c = \frac{1}{\pi} \times \lambda \times \sqrt{\frac{fy}{E}}$$

$$\lambda c = 0.046$$

$$0.046 \le 1 \text{ (OK)}$$

$$\emptyset N_n = \emptyset \times Ag \times \frac{fy}{\omega}$$

$$\emptyset N_n = 2391,9$$

$$\emptyset N_n \ge Pu$$

$$2391 \ge 183,68 \text{ kN/m}^2 \text{ (OK)}$$

Berikut merupakan rekapitulasi hasil analisis sambungan bresing yang telah dilakukan.

Tabel 4. 28 Hasil analisis tahanan dan sambungan baut

Kode	Kuat geser baut	Kuat tumpu baut	Diameter baut	Jumlah baut	Jarak baut ketepi pelat	Jarak antar baut
	φVn	φRn	db	n	S	S1
	kN	kN	mm	buah	m	m
BC1-1	56,06784	0,0432	16	4	0,025	0,05
BC1-2	56,06784	0,0432	16	4	0,025	0,05
BC1-3	56,06784	0,0432	16	6	0,025	0,05
BC1-4	56,06784	0,0432	16	6	0,025	0,05
BC1-5	56,06784	0,0432	16	4	0,025	0,05
BC1-6	56,06784	0,0432	16	4	0,025	0,05
BC2-1	56,06784	0,0432	16	4	0,025	0,05
BC2-2	56,06784	0,0432	16	4	0,025	0,05
BC2-3	56,06784	0,0432	16	6	0,025	0,05
BC2-4	56,06784	0,0432	16	6	0,025	0,05
BC2-5	56,06784	0,0432	16	4	0,025	0,05
BC2-6	56,06784	0,0432	16	4	0,025	0,05
BC3-1	56,06784	0,0432	16	4	0,025	0,05
BC3-2	56,06784	0,0432	16	4	0,025	0,05
BC3-3	56,06784	0,0432	16	4	0,025	0,05
BC3-4	56,06784	0,0432	16	4	0,025	0,05
BC3-5	56,06784	0,0432	16	4	0,025	0,05
BC3-6	56,06784	0,0432	16	4	0,025	0,05

Tabel 4. 29 Hasil analisis sambungan las sudut

Kode	Tebal las	_ 1_		Kontrol	φNn	Pu	Kontrol
Kode	m	– λ <i>c</i>	ω	$\lambda c \leq \omega$	kN	kN	Kontroi
BC1-1	0,01	0,046267	1	OK	2391,9	183,688	OK
BC1-2	0,01	0,046267	1	OK	2391,9	183,688	OK
BC1-3	0,01	0,053754	1	OK	3075,3	333,178	OK
BC1-4	0,01	0,053754	1	OK	3075,3	333,178	OK
BC1-5	0,01	0,046267	1	OK	2391,9	183,688	OK
BC1-6	0,01	0,046267	1	OK	2391,9	183,688	OK
BC2-1	0,01	0,046267	1	OK	2391,9	138,295	OK
BC2-2	0,01	0,046267	1	OK	2391,9	138,295	OK
BC2-3	0,01	0,053754	1	OK	3075,3	254,883	OK
BC2-4	0,01	0,053754	1	OK	3075,3	254,883	OK
BC2-5	0,01	0,046267	1	OK	2391,9	138,295	OK
BC2-6	0,01	0,046267	1	OK	2391,9	138,295	OK
BC3-1	0,01	0,046267	1	OK	2391,9	94,64	OK
BC3-2	0,01	0,046267	1	OK	2391,9	94,64	OK
BC3-3	0,01	0,046267	1	OK	2391,9	66,587	OK
BC3-4	0,01	0,046267	1	OK	2391,9	66,587	OK

Kode	Tebal las	_ 1a		Kontrol	φNn	Pu	- Kontrol
Kode	m	- λι	ω	$\lambda c \leq \omega$	kN	kN	Kontroi
BC3-5	0,01	0,046267	1	OK	2391,9	94,64	OK
BC3-6	0,01	0,046267	1	OK	2391,9	94,64	OK

4.2.3.7 Sambungan pelat dasar kolom (baseplate)

Pelat dasar (*base plate*) merupakan pelat yang berada di antara kolom baja dengan pondasi yang berfungsi untuk meneruskan beban dari kolom ke pondasi serta meratakan beban kolom yang terjadi. Pelat dasar yang dihubungkan dengan kolom baja disambung dengan angkur.

Tabel 4. 30 Data dimensi kolom dan pedestal

	Gaya da	lam				
Momen	Mu	73,0231	kNm			
Aksial	Pu	1177,21	kN			
Geser	Vu		kN			
	Data kol	lom				
Panjang badan	hw	200	mm			
Panjang sayap	bf	200	mm			
Gaya dalam momen	Mu	86485,63				
Gaya dalam aksial	Pu	571949,5				
	Dimensi bas	se plate				
Panjang	N	300	mm			
Lebar	В	300	mm			
Dimensi pedestal						
Panjang	N	400	mm			
Lebar	В	400	mm			
_	Fc	22	N/mm2			
	Fy	240				

A. Tahanan tumpu beton

1. Menghitung nilai e

Setelah merencanakan data spesifikasi yang digunakan, maka selanjutnya adalah menghitung nilai e dan e kritis untuk mengetahui apakah termasuk kedalam jenismomen kecil (*small momen base plate*).

Untuk mendapatkan nilai e dapat menggunakan persamaan sebagai berikut:

$$e = \frac{M_u}{P_u}$$

$$e = \frac{86485,6}{571950}$$

$$e = 0.15 \text{ mm}$$

2. Menghitung nilai tegangan maksimum tumpu beton (fp max)

Untuk mendapatkan nilai fp max harus menghitung A1 dan A2 sebagai luas dari base plate yang ingin direncanakan, setelah di dapatkan nilai A1 dan A2 menggunakan persamaan dibawah ini dapat menghitung nilai fp(max) seperti berikut.

$$A1 = N \times B$$

$$A1 = 300 \times 300$$

$$A1 = 90000 \ mm^2$$

$$A2 = H \times B$$

$$A2 = 400 \times 400$$

$$A2 = 160000 \text{ mm}^2$$

$$fp \max = 0.65 \times 0.85 \times f'c \times \sqrt{\frac{A1}{A2}}$$

$$fp \max = 0.65 \times 0.85 \times 25 \times \sqrt{\frac{144400}{160000}}$$

$$fp \max = 18,41 \text{ Mpa}$$

3. Menghitung nilai tekanan maksimum tumpu beton (qmaks)

Untuk mendapatkan nilai q maksimum dapat menggunakan persamaan seperti berikut:

$$q_{\text{maks}} = fp(maks) \times B$$

$$q_{\text{maks}} = 18,41 \times 300$$

$$q_{maks} = 5525 \text{ N/mm}$$

4. Menghitung nilai eksentrisitas kritis (e crit)

Setelah mendapatkan nilai e, dapat menggunakan persamaan dibawah ini untuk mendapat nilai e kritis pada *base plate*

e kritis =
$$\frac{N}{2} \times \frac{Pu}{2 \times qmaks}$$

e kritis =
$$\frac{300}{2} \times \frac{571950}{2 \times 5525}$$

e kritis =
$$98,23 \text{ mm}$$

Dari perhitungan diatas didapatkan nilai e adalah 0, 15 mm dan ecrit adalah 98,23 mm, maka dapat disimpulkan bahwa desain *base plate* ini termasuk *small moment base plate design* karena nilai e<ecrit.

5. Menghitung panjang bidang tekan beton (Y)

$$Y_1 = N - 2 \times e$$

$$Y_1 = 300 - 2 \times 0.15$$

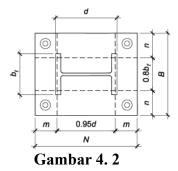
$$Y_1 = 299,69 \text{ mm}$$

$$Y_2 = \frac{Pu}{qmaks}$$

$$Y_2 = \frac{571949,5}{5525}$$

$$Y_2 = 103,52 \text{ mm}$$

Dari perhitungan kedua nilai Y tersebut, maka panjang bidang tekan beton yang dipakai adalah nilai terlecil dari kedua nilai tersebut yaitu 103,52 mm. Kemudian dilakuakan kontrol nilai q dan q maks, dimana q dihitung dengan persamaan berikut.


$$q = \frac{Pu}{Y}$$

$$q = \frac{571949,5}{5525}$$

$$q = 5525 \text{ N/mm}$$

Dari perhitungan diatas didapatkan bahwa nilai $q \le q$ maks, maka pedestal yang digunakan aman karena dapat menahan beban yang ada.

B. Dimensi dan tebal base plate

(Sumber: AISC 2nd Edition)

1. Menghitung luas beban yang bisa ditahan dan ditransfer base plate

$$f = \frac{N}{2} - 1.5$$

$$f = \frac{300}{2} - 1,5$$

$$f = 148,5$$

$$\left(f + \frac{N}{2}\right)^2 = \left(148,5 + \frac{3000}{2}\right)^2$$

$$\left(f + \frac{N}{2}\right)^2 = 89102,25 \text{ mm}^2$$

$$\frac{2 \times \text{Pu} \times \text{e} \times \text{f}}{\text{qmaks}} = \frac{2 \times 571949,5 \times 0,15 \times 148,5}{5525}$$

$$\frac{2 \times \text{Pu} \times \text{e} \times \text{f}}{\text{qmaks}} = 30776,82 \text{ mm}^2$$

Dari hasil perhitungan diatas didapatkan nilai beban yang ditransfer base plate > luas beban yang bisa ditahan oleh base plate, disimpulkan bahwa base plate dapat atau mampu menahan beban yang ada.

2. Menghitung tebal pelat pakai (tp)

$$m = \frac{N-0.95 \times dt}{2}$$

$$m = \frac{300-0.95 \times 200}{2}$$

$$m = 55 \text{ mm}$$

$$n = \frac{B-0.8bf}{2}$$

$$n = \frac{300-0.8200}{2}$$

$$n = 70 \text{ mm}$$

l pakai adalah nilai maksimum dari nilai m dan n, maka nilai l adalah 70 mm

tp min = 1 ×
$$\sqrt{\frac{2 \times Pu}{0.9 \times fy \times B \times N}}$$

tp min = 70 × $\sqrt{\frac{2 \times 571949.5}{0.9 \times 240 \times 300 \times 300}}$

tp min = 16,9 mm

Maka tebal pelat yang digumakan adalah 16,9 mm atau dibulatkan menjadi 20 mm.

- C. Gaya tarik yang terjadi pada angkur
- 1. Menghitung gaya tarik pada angkur baut

$$Tu = q \text{ maks } \times Y - Pu$$

$$Tu = 5525 \times 103,52 - 571949,5$$

$$Tu = 0 N$$

2. Menghitung gaya tarik maksimum satu angkur pada sisi tarik

$$T_{rod} = \frac{Tu}{nt}$$

$$T_{rod} = \frac{0}{4}$$

$$T_{rod} = 0 N$$

3. Menghitung tkuat tarik nominal angkur baut (Nsa)

Luas angkur:

$$Ase = \frac{1}{4} \times \pi \times do^2$$

$$Ase = \frac{1}{4} \times 3,14 \times 14^2$$

Ase =
$$116,64 \text{ mm}^2$$

$$Nsa = Ase \times fu^b$$

$$Nsa = 116,64 \times 500^2$$

$$Nsa = 58320 N$$

$$\phi$$
Nsa = 0,75 × 58320 N

$$\phi$$
Nsa = 43740 N

Dari hasil perhitungan diatas didapatkan nilai Nsa>Trod, maka dapat disimpulkan bahwa angkur mampu menahan beban tarik yang ada.

- D. Gaya geser pada baut
- 1. Menghitung geser yang terjadi pada angkur

$$V_{u1} = \frac{Vu}{n}$$

$$V_{u1} = \frac{31738,92}{4}$$

$$V_{u1} = 7934,73 \text{ N}$$

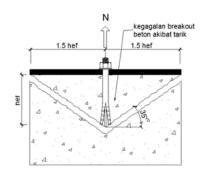
Luas angkur :

$$Abd = \frac{1}{4} \times \pi \times do^2$$

$$Abd = \frac{1}{4} \times 3,14 \times 14^2$$

 $Abd = 116,64 \text{ mm}^2$

Maka, kuat geser baut dihitung dengan persamaan:


 $R_{nv} = Fu_b \times Abd$

 $R_{nv} = 150 \times 116,64$

 $R_{nv} = 13122 \text{ N}$

Berdasarkan perhitungan yang telah dilakukan didapatkan nilai $R_{\rm nv} > V_{\rm u1}$, maka angkur dapat menahan beban geser yang ada.

E. Concrete breakout

Gambar 4. 3 Kegagalan jebol beton akibat tarik

(Sumber: Amirul Huda, 2020)

Anco = $9 \times hef^{1,5}$

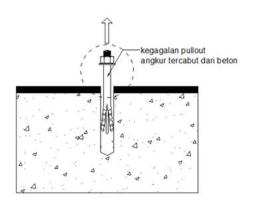
Anco = $9 \times 115^{1,5}$

 $Anco = 119025 \text{ mm}^2$

Dimana konfigurasi angkur yang digunakan adalah 2x2 , kemudian dihitung Kekuatan beton dasara dengan persamaan dibawah ini.

$$Nb = kc \times \sqrt{f'c} \times hef^2$$

$$Nb = 24 \times \sqrt{25} \times 115^2$$


Nb = 1587000 N

 φ Ncbg = $\varphi \times \psi 2 \times \psi 3 \times \psi 4 \times Nb$

 φ Ncbg = 0,7 × 0,775 × 1,25 × 1 × 1587000

 $\phi N cbg = 1076184,38 \text{ N}$

F. Concrete pullout

Gambar 4. 4 Kegagalan jebol beton akibat tarik

(Sumber: Amirul Huda, 2020)

Panjang kait:

 $eh = 4 \times do$

 $eh = 4 \times 14$

eh = 56 mm

 $Np = 0.9 \times f'c \times eh \times da$

 $Np = 0.9 \times 25 \times 56 \times 12$

Np = 15120 N

Maka,

 $\phi Np = \phi \times \psi c \times Np$

 $\phi Np = 0.7 \times 1 \times 15120$

 $\phi Np = 10584 N$

G. Concrete pryout

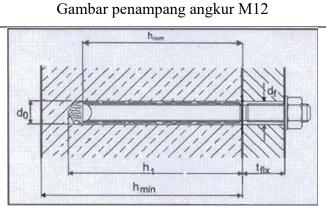
Karena nilai heff> 2 inc, maka nilai kcp yang dipakai adalah 2. Kemudian dihitung *concrete brekout strength* (Ncp) dengan persamaan .

 $Ncp = k \times \sqrt{f'c} \times hef^{1,5}$

 $Ncp = 24 \times \sqrt{25} \times 115^{1,5}$

Ncp = 1587000 N

Kuat nominal *pryout strength* (Vcp):

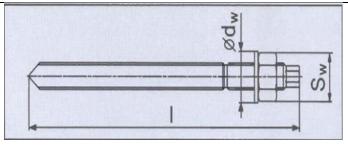

 $Vcp = kcp \times Ncp$

 $Vcp = 2 \times 1587000$

Vcp = 295977,02 N

Untuk faktor keselamatan dan ketersediaan produk, digunakan tebal plat baja HRP (Hot Rolled Plate) dari Krakatau Steel dengan ketebalan 20 mm. Selanjutnya setelah dilakukan trial untuk dimensi angkur. Digunakan angkur dari Hilti dengan jenis angkur RE 500 + Has M12. Berikut merupakan tabel dimensi dan mutu angkur.

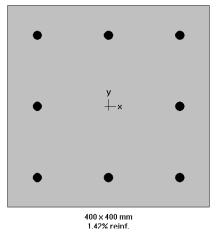
Tabel 4. 31 Spesifikasi angkur M12

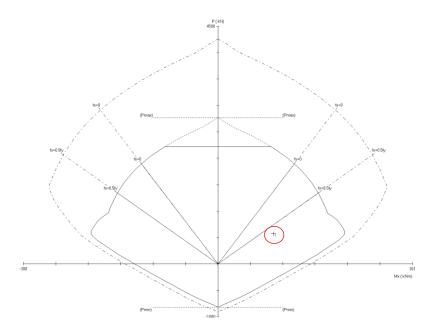


Keterangan Simbol Nilai Satuan Drill bit diameter 14 d0mm Hole depth h1 115 mm Nom. anchor depth hnom 110 mm Min. thickness of base material 140 hmin mm 14 Max fixture thickness tfix mm df 14 Clearance recquired mm

(Sumber: Spesifikasi produk angkur baja HILTI)

Tabel 4. 32 Spesifikasi angkur M12


Gambar penampang angkur M12



Anchor length	I	110	mm
Stressed cross section	А	84,3	mm
Nominal tensile strength	fu	500	Мра
Yield strength	fy	400	Мра
Width across flats	Sw	13	mm
Washer diameter	dw	24	mm

(Sumber: Spesifikasi produk angkur baja HILTI)

4.2.3.5 Perencanaan pedestal

Gambar 4. 5 Hasil analisis tulangan pedestal menggunakan software SPColumn

Pada gambar diatas menyatakan bahwa pedestal yang di desain berada di dalam diagram interkasi, hal ini menunjukkan bahwa pedestal tersebut masih mampu menahan beban-beban yang bekerja.

Kebutuhan tulangan utama pada pedestal digunakan software *SPColumn* dimana didapatkan kebutuhan tulangan utama 8-D19 dengan rasio tulangan 1,42 %. Kebutuhan tulangan masih cukup efisien mengingat rasio tulangan berada diantara 1% sampai 4%.

Untuk menghitung memastikan bahwa tulangan hasil dari software aman digunakan, maka dilakukan kontrol tulangan utama dan tulangan sengkang secara manual. Berikut data perencanaan yang dilampirkan dalam bentuk tabel dibawah ini.

Tabel 4. 33 Data perencanaan pedestal

Gaya dalam						
Gaya aksial ultimate	Pu	1177,219	kN			
Gaya momenl ultimate	Mu	73,0231	kNmm			
Gaya geser ultimate	Vu	27,907	kN			
Data pedestal						
Mutu beton	fc	25	Mpa			
Mutu tulangan	fy	400	Mpa			
Lebar pedestal arah x	bx	350	mm			
Lebar pedestal arah y	by	350	mm			
Tinggi pedestal	h	350	mm			

Selimut beton	d'	40	mm
Jarak efektif tulangan	d	310	mm
Modulus elastisitas	Es	200000	Mpa
	b1	0,85	
	у	175	mm

Berikut merupakan langkah-langkah perhitungan untuk mendapatkan tulangan pedestal yang aman digunakan :

$$Cb = \left(\frac{600}{600 + fy}\right) d$$

$$Cb = \left(\frac{600}{600 + 400}\right) 310$$

Cb = 186 mm

$$Fs' = 0.003 \times Es \times \left(\frac{Cb - d'}{cb}\right)$$

$$fs' = 0.003 \times 200000 \times \left(\frac{186 - 40}{186}\right)$$

fs' = 470,96 Mpa

$$fs = 0.003 \times 200000 \times \left(\frac{360 - 186}{186}\right)$$

fs = 400 Mpa

$$a = b1 \times cb$$

$$a = 0.85 \times 186$$

$$a = 158,1 \text{ mm}$$

Kebutuhan luas tulangan:

As
$$min = 0.01 \times bx \times by$$

As min =
$$0.01 \times 350 \times 350$$

As $min = 1225 \text{ mm}^2$

$$Ag = bx \times by$$

$$Ag = 350 \times 350$$

$$Ag = 122500 \text{ mm}^2$$

$$Ac = bx \times d$$

$$Ac = 350 \times 310$$

$$Ac = 108500 \text{ mm}^2$$

Berdasarkan SNI 2847:2014 Bab 10.6.1.1 Menyatakan bahwa tulangan longitudinal tidak kurang dari 1% dan tulangan longitudinal tidak lebih dari 8%:

$$\rho s \min = 1\% = 0.01$$

$$\rho \text{ req} = 8\% = 0.08$$

Luas tulangan minimal yang dibutuhkan dihitung dengan persamaan berikut.

As req =
$$\rho$$
 req \times b \times h

As req =
$$0.01 \times 350 \times 350$$

As
$$req = 1225 \text{ mm}^2$$

Luas tulangan yang dibutuhkan atau dipakai:

Untuk menghitung luas tulangan dilakukan *try and error* pada jumlah tulangan dan diameter tulangan, dimana :

$$n = 8$$

d = 16

Maka,

As pakai =
$$\frac{1}{4} \times \pi \times d^2 \times n$$

As pakai =
$$\frac{1}{4} \times 3.14 \times 16^2 \times 8$$

As pakai =
$$1607,68 \text{ mm}^2$$

Setelah mendapatkan luas tulangan, dilakukan kontrol luas tulangan antara luas tulangan pakai dengan luas tulangan minimal yang dibutuhkan (As req< As pakai), maka luas tulangan dikatakan cukup dengan 8 tulangan diameter 16 mm.

Pengecekan terhadap kapasitas pedestal:

1. Check aksial

$$Pn = 0.85 \times f'c \times b \times a + As' \times fs' - As \times fs$$

$$Pn = 11409 \text{ kN}$$

$$\varphi Pn = 0.65 \times Pn$$

$$\varphi$$
Pn = 0,65 × 11409

$$\varphi Pn = 7416 \text{ kN}$$

Dari perhitungan diatas, didapatkan bahwa nilai $\phi Pn > Pu$ yaitu 7416 >1177 kN, maka tulangan pedestal yang digunakan aman terhadap gaya aksial yang ada.

2. Check momen

$$Mn = (f'c \times b \times a) \times \left(y - \frac{a}{2}\right) + (As \ req \times fs) \times (y - d')$$
$$+ (A \ req \times fs) \times (d - y) \times b$$

Mn = 86974 kNm

 φ Mn = 0,85 × Mn

 ϕ Mn = 0.85 × 86974

 ϕ Mn = 73828 kNm

Karena nilai ϕ Mn > Mu yaitu 73828 > 73,02 kNmm, maka tulangan pedestal yang digunakan aman terhadap mmomen yang ada.

3. Check geser

$$Vc_1 = \frac{1}{6} \times \sqrt{f'c} \times b \times h$$

$$Vc_1 = \frac{1}{6} \times \sqrt{25} \times 350 \times 350$$

 $Vc_1 = 3228,15 \text{ kN}$

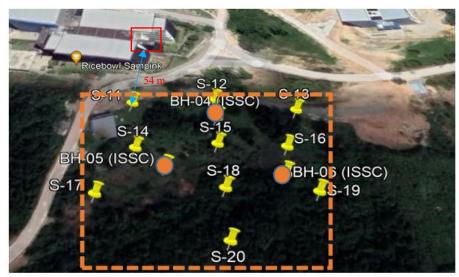
$$Vc_2 = 0.3 \times \sqrt{f'c} \times b \times h$$

$$Vc_2 = 0.3 \times \sqrt{25} \times 350 \times 350$$

$$Vc_2 = 5810,68 \text{ kN}$$

Maka Vc pakai adalah Vc minimum dari kedua nilai Vc diatas, yaitu 3228,15 Kn.

 $\varphi Vc = \min(Vc_1, Vc_2)$


 $\phi Vc = 0.75 \times 3228.15$

 $\phi Vc = 2421,11 \text{ kN}$

Dari hasil perhitungan diatas didapatkan nilai $\phi Vc > Vu$ yaitu 2421 > 27,90 kN, maka dapat disimpulkan bahwa tulangan pedestal dapat menahan gaya geser yang ada.

Maka dari hasil analisis tulangan yang telah dilakukan didapatkan tulangan utama D16 sebanyak 8 tulangan dan digunakan sengkang dengan diameter Ø10 dan jarak antar tulangan adalah 100 mm.

4.2.3.8 Analisis Fondasi

Gambar 4. 6 Denah titik sondir

Data penelitian tanah yang digunakan peneliti untuk merencanakan pondasi merupakan data sekunder, dimana peneliti tidak langsung terjun ke lapangan namun data tersebut merupakan data yang diperoleh dari instansi yang terkait. Pada penelitian ini data tanah yang digunakan untuk perencanaan pondasi adalah data hasil pengujian tanah dilapangan yaitu uji sondir. Data uji sondir yang digunakan merupakan data hasil uji di lokasi pembangunan Gedung ISSC ITK, dikarenakan data pengujian tanah gedung A dan gedung disekitarnya tidak ada. Pada Tabel 2 SNI 8460:2017 menyatakan bahwa bangunan struktur kurang dari 4 lantai dapat menggunakan 1 titik pengujian dengan akurasi jarak adalah 25 sampai 50 meter. Maka peneliti menggunakan data tanah tersebut dengan pertimbangan menentukan titik hasil pengujian yang paling dekat dengan lokasi penelitian. Titik sondir yang paling dekat dengan lokasi penelitian adalah S11 dengan jarak ± 50 meter. Jarak lokasi penelitian dengan titik sondir terdekat dapat dilihat pada gambar diatas.

Setelah penentuan titik uji sondir yang akan digunakan dalam analisis perhitungan, maka dilanjutkan dengan perencanaan pondasi. Dimana secara umum fondasi dikelompokkan menjadi 2 yaitu fondasi dangkal (*Shallow footing*) dan Fondasi Dalam (*Depth footing*). Fondasi dangkal terdiri dari Fondasi telapak (*square footing*), fondasi menerus (*continus footing*), fondasi lingkaran (*circle footing*), fondasi rakit (*raft footing*). Sedangkan fondasi dalam terdiri dari fondasi

sumuran, fondasi tiang, fondasi kaison. Pemilihan fondasi dilakukan berdasarkan kondisi tanah pendukungnya dan lingkungan sekitar, pada penelitian ini jenis pondasi yang digunakan adalah pondasi dalam yaitu pondasi *bor pile* karena lapisan tanah keras terletak pada kedalaman > 3 meter, dimana syarat penggunaan jenis pondasi ini adalah lapisan tanah keras terletak pada kedalaman > 3 m di bawah permukaan tanah lunak (*Soft Soil*). Sedangkan pemilihan jenis fondasi *bored pile* merupakan alternatif lain apabila dalam pelaksanaan pembuatan pondasi tidak memungkinkan untuk menggunakan tiang pancang (*spoon pile*), dikarenakan dampak yang ditimbulkan terhadap lingkungan sekitar (getaran, kebisingan, dan lain- lain), lokasi yang sempit dan kondisi lain yang dapat mengganggu atau mempengaruhi pekerjaan aktifitas disekitar proyek pembangunan (Verison dan Mulya, 2024).

Kedalaman pondasi bored pile atau panjang tiang pondasi ditentukan berdasarkan kedalaman lapisan tanah keras yang biasanya diidentifikasi melalui pengujian tanah seperti Standard Penetration Test (SPT) atau Cone Penetration Test (CPT/sondir). Lapisan tanah keras ini memiliki nilai kekuatan penetrasi (qc) lebih besar dari 150 kg/cm². Nilai qc ini menunjukkan bahwa tanah sudah cukup padat dan kuat untuk menahan beban struktur, maka pada perencanaan pondasi bored pile ini digunakan kedalaman pondasi atrau kedalaman tanah keras pada kedalaman 8,6 meter. Berdasarkan SNI 03-2847:2002 pasal 9.7, tebal selimut beton minimum untuk beton yang langsung bersentuhan dengan tanah harus cukup tebal untuk melindungi tulangan dari korosi dan kerusakan akibat kondisi lingkungan tanah. Biasanya ketebalan selimut beton minimal yang disyaratkan adalah 75 mm untuk beton yang bersentuhan langsung dengan tanah. Perencanaan diameter pondasi bored pile dengan metode trial and error merupakan metode percobaan yang bertujuan mendapatkan dimensi tiang bor yang memenuhi syarat kekuatan dan deformasi sesuai beban struktur dan kondisi tanah. Dengan menggunakan metode trial and error digunakan diameter bored pile 300 mm dengan mutuu rencana adalah 30 Mpa. Data perencanaan untuk analisis pondasi bor pile dapat dilihat pada tabel dan perhitungan berikut ini.

Tabel 4. 34 Data perencanaan pondasi

Keterangan	Simbol	Nilai	Satuan
Kedalaman tiang tanah keras		8,6	m
Diameter bored pile	d	300	mm
Tebal dinding/selimut beton	d'	75	mm
Mutu tiang bor	F'c	30	Mpa
Luas penampang	Ab	70650	Mm2
Berat jenis baja		7850	
Berat jenis beton		2400	

A. Kapasitas daya dukung pondasi bored pile

1. Mengitung kapasitas daya dukung bored pile

Perhitungan kapasitas daya dukung ultimate dihitung menggunakan metode Aoko & De Alencar karena perhitungan kapasitas pondasi bor dengan sondir tidak memperhitungkan kuat dukung selimut pondasi bor. Hal ini dikarenakan perlawanan geser tanah yang terjadi pada pondasi bor dianggap sangat kecil sehingga dianggap tidak ada.

$$Q_u = q_b \times A_b$$

Dimana,

$$q_b = q_c/F_b$$

Kemudian untuk kapasitas ultimate akan dibagikan dengan faktor aman, persamaan tersebut dapat dilihat dibawah ini.

$$Q_{all} = \frac{Q}{SF}$$

Dimana, nilai SF pada tiang yang dasar tiangnya dibesarkan (d < 2 m) nilai SF yang digunakan adalah 2,5 dan untuk dasar tiang tanpa pembesaran nilai SF yang digunakan adalah 2. Namun untuk menghindari terjadinya kegagalan struktur pada pondasi karena ketidakakuratan data tanah yang dapat mempengaruhi desain pondasi, sehingga faktor keamanan harus ditingkatkan (Gumilang dkk, 2016). Maka peneliti menggunakan nilai Safety Factor (SF) = 3,5.

Kapasitas dukung ujung persatuan luas (q_b):

Kedalam	ın	qc	JHL	FR	Konsistensi	
meter	Kg/cm	2 Kpa	Kg/cm		Tanh	
0	0	0	0	0	Sangat Lunak	
(),2 2,02	198,094	1,77	4,43	Sangat Lunak	
(0,4 3,03	297,141	5,31	5,9	Sangat Lunak	
(7,08	694,311	8,85	2,53	Sangat Lunak	
(),8 10,11	991,452	14,16	2,66	Sangat Lunak	
1	10,11	991,452	19,47	2,66	Sangat Lunak	
	,2 8,09	793,358	23,01	2,21	Sangat Lunak	
	,4 8,09	793,358	26,55	2,21	Sangat Lunak	
	,6 7,08	694,311	20,09	2,53	Sangat Lunak	
	,8 7,08	694,311	33,63	2,53	Sangat Lunak	
2	9,1	892,405	37,17	1,97	Sangat Lunak	
	2,2 12,14	1190,53	42,48	2,21	Lunak	
	2,4 15,17	1487,67	47,79	1,77	Lunak	
	2,6 15,17	1487,67	53,1	1,77	Lunak	
	2,8 15,17	1487,67	58,41	1,77	Lunak	
3	16,18	1586,72	65,49	2,21	Lunak	
	3,2 16,18	1586,72	72,57	2,21	Lunak	
	3,4 18,2	1784,81	79,65	1,97	Lunak	
	3,6 20,23	1983,89	86,73	1,77	Lunak	
	3,8 20,23	1983,89	93,81	1,77	Lunak	
4	22,25	2181,98	102,66	2,01	Menengah	
	1,2 28,32	2777,24	111,51	1,58	Menengah	
	1,4 32,36	3173,43	122,13	1,66	Menengah	
	40,45	3966,79	134,52	1,55	Menengah	
	1,8 52,59	5157,32	158,68	1,36	Kaku	
5	68,77	6744,03	166,39	1,3	Kaku	
	5,2 91,02	8926,01	187,63	1,18	Sangat Kaku	
	5,4 95,07	9323,18	208,87	1,13	Sangat Kaku	
	5,6 104,17	10215,6	230,11	1,03	Sangat Kaku	
	5,8 111,25	10909,9	251,35	0,97	Sangat Kaku	
6	111,25	10909,9	272,59	0,97	Sangat Kaku	
	5,2 113,27	11108	295,6	1,03	Sangat Kaku	
	5,4 116,3	11405,1	318,61	1	Sangat Kaku	
	5,6 119,34	11703,3	339,85	0,9	Sangat Kaku	
	5,8 121,36		362,86	0,96	Sangat Kaku	
7	121,36	_	385,87	0,96	Sangat Kaku	
	7,2 123,38	_	408,88	0,94	Sangat Kaku	
	7,4 137,54		433,66	0,91	Sangat Kaku	
	7,6 146,61		460,21	0,92	Sangat Kaku	
-	7,8 143,61	14083,3	483,23	0,81	Sangat Kaku	1,5 D (Atas ujung tiang)
8	113,27	11108	504,47	0,95	Sangat Kaku	2,5 b (Atas ajang tiang)
	3,2 116,3	11405,1	527,48	1	Sangat Kaku	
	3,3 122,87	5 12049,9	539,87	0,985	Sangat Kaku	
	3,4 129,45	12694,7	552,26	0,97	Sangat Kaku	
	3,6 166,87	16364,4	587,66	1,07	Keras	1 E D / Dawish riling tion = 1
	3,8 217,44	21323,6	631,91	1,03	Keras	1,5 D (Bawah ujung tiang)

Gambar 4. 7 Penentuan nilai qc rata-rata berdasarkan metode Aoko & De Alencar

Untuk menghitung nilai q_b maka digunakan persamaan berikut dengan nilai q_c rata-rata adalah sebagai berikut.

$$\begin{split} q_c \ rata - rata &= \frac{\Sigma q_c}{n} \\ q_c \ rata - rata &= \frac{113,27 + 116,3 + 122,88 + 129,45 + 166,87 + 217,44}{6} \\ q_c \ rata - rata &= 144,36 \ kg/cm^2 \\ Maka, \\ q_b &= \frac{q_c}{F_b} \end{split}$$

$$q_b = \frac{144,36}{3.5}$$

$$q_b = 41,24 \text{ kg/cm}^2$$

Kapasitas ultimate, dihitung dengan persamaan berikut:

$$Q_{u} = q_{b} \times A_{b}$$

$$Q_u = 41,24 \times 706,5$$

$$Q_u = 29141,61 \text{ kg}$$

$$Q_u = 29,14 \text{ ton}$$

Kapasitas ijin, dihitung dengan persamaan berikut:

$$Q_{all} = \frac{Q_u}{SF}$$

$$Q_{all} = \frac{29141,61}{3.5}$$

$$Q_{all} = 8326,17 \text{ kg}$$

$$Q_{all} = 8,3 \text{ ton}$$

2. Menghitung jumlah tiang bor

Kebutuhan tiang bor dalam satu pilecap dapat dihitung berdasarkan persamaan berikut.

Jumlah tiang (n):

$$n = \frac{Pu}{Q_{all}}$$

$$n = \frac{0,12}{8,3}$$

$$n = 0.01$$

n = 1 Buah tiang

Maka jumlah tiang yang dibutuhkan dalam satu *pile cap* adalah 1 buah.

B. Penurunan pondasi bored pile

Penurunan tiang bor dihitung berdasarkan persamaan Vesic 1997 berikut ini:

$$S_e = S_1 + S_2 + S_3$$

Dimana,

Beban diujung tiang (Q_{wp}) , dihitung dengan persamaan :

$$Q_{wp} = q_c \times A_p$$

$$Q_{wn} = 144,36 \times 706,5$$

$$Q_{wp} = 101995,63 \text{ kg}$$

$$Q_{wp} = 101,99 \text{ ton}$$

Beban diujung kulit (Qws), dihitung dengan persamaan:

$$Q_{ws} = JHL \times K_N$$

$$Q_{ws} = 208,01 \times (3,14 \times 30)$$

$$Q_{ws} = 19595,44 \text{ kg}$$

$$Q_{ws} = 1.9 \text{ ton}$$

Penurunan elastis tiang (Se1), dihitung dengan persamaan:

$$S_1 = \frac{(Q_{wp} + \xi Q_{ws})L}{A_p E_p}$$

Dimana,

$$E_{p} = 4700\sqrt{f'c}$$

$$E_p = 4700\sqrt{30}$$

$$E_p = 25742,96 \text{ Mpa}$$

$$S_{e1} = \frac{(101,99 + 0,5 \times 1,9) \times 8,6}{706,5 \times 25742,96}$$

$$S_{e1} = 0,00000059 \text{ mm}$$

Penurunan tiang akibat ujung tiang (S_{e2}) , dihitung dengan persamaan :

$$q_p = \frac{Q_{wp}}{A_p}$$

$$q_p = \frac{101,99}{70.65}$$

$$q_p = 1.44 \text{ ton/m}$$

$$S_2 = \frac{(Q_{wp} \times C_p)}{D \times q_p}$$

$$S_2 = \frac{101,99 \times 0,03}{0,3 \times 1,44}$$

$$S_2 = 21,19 \text{ mm}$$

Penurunan tiang akibat selimut tiang (S_{e3}) , dihitung dengan persamaan :

$$S_3 = \frac{(Q_{wp} \times C_s)}{L \times q_p}$$

Dimana,

$$C_s = 0.93 + 0.16 \sqrt{\frac{L}{D}} \times C_p$$

$$C_s = 0.93 + 0.16 \sqrt{\frac{8.6}{0.3}} \times 0.09$$

$$C_s = 1,007$$

Maka,

$$S_3 = \frac{101,99 \times 1,007)}{8,6 \times 1,44}$$

$$S_3 = 0.15 \text{ mm}$$

Maka untuk mendapatkan nilai penurunan total, dilakukan penjumlahan ketiga hasil penurunan diatas :

$$S_e = 0.00000059 + 21.19 + 0.15$$

 $S_e = 21,35 \text{ mm}$

$$S_{iiin} = 10\% \times D$$

$$S_{ijin} = 10\% \times 300$$

$$S_{ijin} = 30 \text{ mm}$$

Dari hasil perhitungan penurunan pondasi yang telah dilakukan didapatkan hasil penurunan total adalah 21,35 mm dan penurunan yang diijinkan adalah 30 mm. Dimana nilai $S_e < S_{ijin}$, maka dapat disimpulkan bahwa penurunan pondasi yang terjadi aman karena tidak melebihi penurunan yang diijinkan.

C. Lateral pondasi

Pondasi tiang harus dirancang dengan memperhitungkan bebanbeban horizontal atau lateral, seperti, tekanan tanah lateral, beban gelombang air, benturan kapal, dll. Besarnya beban lateral yang terjadi harus dapat ditahan oleh pondasi.

1. Kriteria tiang

Menentukan Kriteria Tiang Menentukan tiang berperilaku seperti tiang panjang atau tiang pendek, maka perlu mengetahui faktor kekakuan tiang yang dapat ditentukan dengan menghitung faktor –

faktor kekakuan T. Faktor kekakuan untuk modulus tanah yang tidak konsisten (T) memiliki beberapa syarat, yaitu :

- Untuk tiang pendek $\beta hL < 2.5$
- Untuk tiang panjang $\beta hL > 2.5$

Untuk menentukan kriteria tiang, maka terlebih dahulu dilakukan perhitungan sebagai berikut.

Tegangan efektif:

$$\sigma v = h \times \gamma$$

$$\sigma v = 0.2 \times 19.62$$

$$\sigma v = 3.94 \text{ kN/mm}^2$$

Kohesi tanah undrained:

$$Cu = \frac{qc - \sigma v}{nK}$$

$$Cu = \frac{144,26 - 3,94}{18}$$

$$Cu = 8,018 \text{ kg/cm}^2$$

Modulus reaksi subgrade horizontal:

$$Kh = \frac{k1}{1.5}$$

$$Kh = \frac{7,3}{1,5}$$

$$Kh = 4.8 \text{ kg/cm}^3$$

Faktor kekakuan relatif:

$$\beta h = \left(\frac{kh \times h}{4 \times Ep \times Ip}\right)^{1/4}$$

$$\beta h = \left(\frac{4.8 \times 30}{4 \times 25742 \times 0.049}\right)^{1/4}$$

$$\beta h = 0.23$$

Panjang Faktor kekakuan relatif:

$$\beta hL = \beta h \times L$$

$$\beta hL = 0.23 \times 30$$

$$\beta hL = 6.9 \text{ cm}$$

Cek Faktor kekakuan:

Karena nilai $\beta hL=6.9$, maka termasuk tiang panjang L>2.5 dimana $\beta hL=6.9>2.5$ cm.

2. Lateral tiang

Kuat lentur beban borepile:

$$fb = 0.4 \times f'c$$

$$fb = 0.4 \times 30$$

$$fb = 122,36 \text{ kg/cm}^2$$

Tahanan momen:

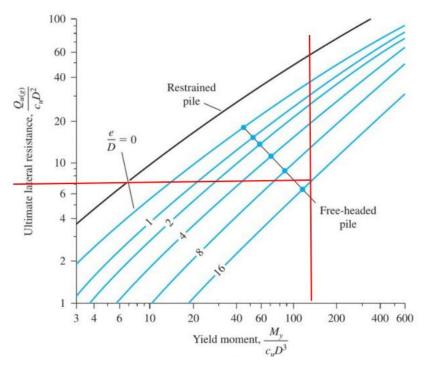
$$W = \frac{Ip}{\frac{D}{2}}$$

$$W = \frac{\frac{1}{64} \times 3,14 \times 30}{\frac{30}{2}}$$

$$W = 2649,37 \text{ kg. cm}$$

Momen leleh tiang:

$$My = fb \times W$$


$$My = 122,36 \times 2649,37$$

$$My = 3179,26 \text{ kg. cm}$$

Kemudian untuk mencari nilai Tahanan lateral ultimit (Hu), dilakukan pembacaan grafik dengan mencari nilai $\frac{My}{Cu \times D^3}$ dengan $\frac{Hu}{Cu \times D^3}$, kemudian disesuaikan dengan garis pada grafik, apakah termasuk tiang ujung bebas atau tiang ujung jepit.

$$\frac{My}{Cu \times D^3} = \frac{3179,26}{8,01 \times 30^3}$$

$$\frac{\text{My}}{\text{Cu} \times \text{D}^3} = 146,85$$

Gambar 4. 8 Grafik nilai Hu, Metode Brom's

Sumber: Braja M. Das, 2011

Dari pembacaan grafik diatas maka didapatkan nilai $\frac{\text{Hu}}{\text{Cu}\times\text{D}^3}$ adalah 7. Hitung,

 $Hu = 7 \times Cu \times D^3$

 $Hu = 7 \times 8.018 \times 30^3$

Hu = 50514,62 kg

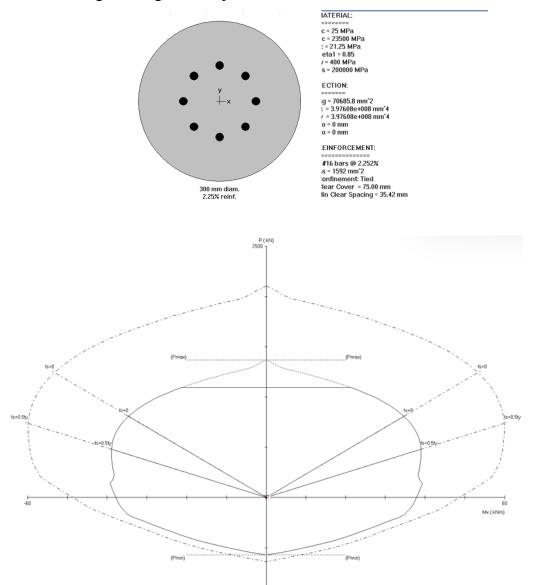
Hu = 495,54 kN

Untuk faktor keamanan, maka nilai Hu dibagikan dengan nilai SF=2,5.

$$Hu all = \frac{Hu}{SF}$$

Hu all =
$$\frac{495,54}{2,5}$$

Hu all = 198,21 kN


Kontrol nilai tahanan lateral ultimit (Hu) terhadap Momen maksimum (M maks) :

Hu all > M maks

198,21 > 34,44

Setelah itu, dilakukan perhitungan defleksi tiang menurut Broms :

D. Perhitungan tulangan bored pile

Gambar 4. 9 Hasil analisis tulangan *bored pile* menggunakan software *SPColumn*

Pada gambar diatas menyatakan bahwa tiang bor yang di desain berada di dalam diagram interkasi kolom, hal ini menunjukkan bahwa tiang tersebut masih mampu menahan beban-beban yang bekerja.

Kebutuhan tulangan utama pada tiang bor digunakan software *SPColumn* dimana didapatkan kebutuhan tulangan utama 8-D1 dengan rasio tulangan 2,25 %. Kebutuhan tulangan masih cukup efisien mengingat rasio tulangan berada diantara 1% sampai 4%.

Untuk menghitung tulangan sengkang fondasi tiang bor, maka diperlukan data perencanaan yang dilampirkan dalam bentuk tabel dibawah ini.

Tabel 4. 35 Data perencanaan bored pile

Gaya dalam				
Gaya geser	Vu	0,37	kN	
Gaya aksial	Pu	28,78	kN	
Keterangan	Simbol	Nilai	Satuan	
Mutu beton	F'c	25	Mpa	
Diameter bored pile	D tiang	300	mm	
Diameter tulangan utama	D tulangan utama	16	mm	
Diameter tulangan sengkang	D tulangan sengkang	10	mm	

h = 300 mm

$$ds = Selimut beton + \frac{1}{2} \times D_{tul.utama} + D_{tulsengkang}$$

$$ds = 75 + \frac{1}{2} \times 16 + 10$$

$$ds = 88 \text{ mm}$$

$$d = h - ds$$

$$d = 300 - 88$$

$$d = 212 \text{ mm}$$

$$A_g = \frac{1}{4} \times \pi \times d^2$$

$$A_g = 70650 \text{ mm}^2$$

$$b_{w} = \frac{A_{g}}{0.8 \times h}$$

$$b_w = \frac{70650}{0.8 \times 300}$$

$$b_w = 294,37 \text{ mm}^2$$

Menghitung gaya geser yang mampu ditahan oleh beton (V_c):

$$V_c = 0.17 \times \left(1 + \frac{P_u}{14 \times A_g}\right) \times \lambda \times \sqrt{f'c} \times b_w \times d$$

$$V_c = 0.17 \times \left(1 + \frac{28.78}{14 \times 70650}\right) \times 1 \times \sqrt{25} \times 294.37 \times 212$$

$$V_c = 53047,92 \text{ kN}$$

$$\emptyset V_c = 0.75 \times 53047.92$$

$$ØV_c = 39785,94 \text{ kN}$$

$$V_{s} = \frac{Vu - \emptyset V_{c}}{\emptyset}$$

$$V_s = \frac{0,37 - 39785,94}{0.75}$$

$$V_s = 53047,4 \text{ kN}$$

$$V_s$$
maks = 0,66 × $\sqrt{f'c}$ × b_w × d

$$V_{s}$$
 maks = 0,66 × $\sqrt{25}$ × 294,37 × 212

 V_{s} maks = 205944,8 kN

Kontrol nilai V_sdan V_smaks,

$$V_s < V_s$$
 maks

$$53047.4 \text{ kN} < 205944.8 \text{ kN}$$
 (OK)

Maka dapat disimpulkan bahwa ukuran tiang yang digunakan MAMPU menahan geser yang ada.

Menghitung luas sengkang perlu (A_v, u), dimana nilai S=1000 mm.

$$A_{v1} = \frac{V_s \times S}{fy \times d}$$

$$A_{v1} = \frac{-53047,4 \times 1000}{400 \times 212}$$

$$A_{v1} = -625,55 \text{ mm}^2$$

$$A_{v2} = 0.35 \frac{b_w \times S}{fy}$$

$$A_{v2} = 0.35 \frac{294.37 \times 1000}{400}$$

$$A_{v2} = 257,57 \text{ mm}^2$$

$$A_{v3} = 0.062 \times \sqrt{f'c} \times \frac{b_w \times S}{fv}$$

$$A_{v3} = 0.062 \times \sqrt{25} \times \frac{294.37 \times 1000}{400}$$

$$A_{v3} = 228,14 \text{ mm}^2$$

Maka nilai A_v yang digunakan adalah nilai A_v terbesar yaitu nilai $A_{v2} = 257,57 \text{ mm}^2$.

Menghitung jarak sengkang (s):

$$s = \frac{n \times \frac{1}{4} \times d^2 \times S}{A_v}$$

$$s = \frac{1 \times \frac{1}{4} \times 10^2 \times 1000}{257,57}$$

s = 97,05 mm

Kontrol jarak antar sengkang:

$$s1 < 16 \times D_{tul.utama}$$

$$s1 = 16 \times 16$$

$$s1 = 256 \text{ mm}$$

$$s2 < 48 \times D_{tul.sengkang}$$

$$s2 = 48 \times 10$$

$$s2 = mm$$

$$s3 < \frac{d}{2} = \frac{212}{2} = 106 \text{ mm}$$

$$s3 = \frac{212}{2}$$

= 106 mm

s4 < 300 mm

Setelah dilakukan kontrol nilai s pada nilai s1 sampai s4 maka dipilih nilai yang paling kecil diantaranya, yaitu 106 mm atau dibulatkan ke atas maka nilai s pakai adalah 110 mm.

Dari hasil perhitungan diatas disimpulkan bahwa kebutuhan tulangan sengkang tiang bor didapatkan Ø10-110.

E. Perencanaan pile cap

Perencanaan *pile cap* pada pondasi *bored pile* ini direncanakan menggunakan standart SNI 2847-2019, dengan menggunakan data perencanaan berikut ini.

Gambar 4. 10 Gambar tampak atas dan samping atas pile cap

Tabel 4. 36 Data perencanaan

Data perencanaan pilecap					
Keterangan	Simbol	Nilai	Satuan		
Diameter bored pile	d	300	mm		
Panjang pondasi	L	6800	mm		
Mutu beton	f`c	25	Mpa		
Mutu baja	fy	400	MPa		
Gaya aksial	Pu	28,78	kN		

1. Dimensi pile cap

 $2D = 2 \times 300$

2D = 600 mm

Karena jumlah tiang bor adalah 1, maka diasumsikan bahwa bentuk *pile cap* adalah persegi, dengan nilai Lx = Ly maka, panjang *pile cap* adalah 600 mm dan lebar *pile cap* adalah 600 mm. Tebal minimum yang disyaratkan untuk *pile cap* pada pasal 13 SNI 2847:2019 adalah 300 mm, maka tebal *pile cap* yang dipakai adalah 300 mm.

2. Menghitung tulangan lentur

Lebar penampang kritis:

$$B = \frac{Lebar\ pile\ cap}{2} - \frac{Lebar\ kolom}{2}$$

$$B = \frac{600}{2} - \frac{200}{2}$$

B = 200 mm

Berat pile cap pada penampang kritis:

 $q' = 4700 \times lebar$ pile cap × tebal pile cap

$$q' = 4700 \times 600 \times 300$$

$$q' = 432 \text{ kg/m}^2$$

Menghitung nilai Mu:

$$Mu = \frac{1}{2} \times \frac{Pu}{A} - \frac{1}{2} \times q' \times B^2$$

$$Mu = \frac{1}{2} \times \frac{28,78}{360000} - \frac{1}{2} \times 200^2$$

$$Mu = 486,54 \text{ kNm}$$

Menghitung nilai R_n:

$$R_n = \frac{Mu}{\phi b d^2}$$

$$R_{\rm n} = \frac{486,54}{0.9 \times 600 \times 225^2}$$

$$R_n = 0.000017 \text{ mm}$$

$$\rho_{\text{perlu}} = \frac{0.85 \times f'c}{fy} \times \left(1 - \sqrt{1 - \frac{2 \times R_{\text{n}}}{0.85 \times f'c}}\right)$$

$$\rho_{\text{perlu}} = \frac{0.85 \times 25}{400} \times \left(1 - \sqrt{1 - \frac{2 \times 0.0000048}{0.85 \times 25}}\right)$$

$$\rho_{perlu} = 0.000000044 \text{ mm}^2$$

Menghitung Asperlu:

$$A_s perlu = \rho \times b \times d$$

$$A_s \text{ perlu} = 0.000000044 \times 600 \times 225$$

$$A_s$$
 perlu = 0,006 mm2

Menghitung nilai A_s min:

$$A_s \min = 0.0018 \times L \times t$$

$$A_s \min = 0.0018 \times 600 \times 300$$

$$A_s \min = 324 \text{ mm}$$

 A_s pakai adalah nilai maksimum antara A_s perlu dan A_s min, dimana nilai maksimum diantara nilai kedua tersebut adalah nilai A_s min, maka nilai A_s pakainya adalah 324 mm.

Menghitung jarak dan jumlah tulangan:

Diameter tulangan (d) = 16 mm

Jarak antar tulangan (s) = 100 mm

Maka,

$$n = \left(\frac{L}{s}\right)$$

$$n = \frac{600}{100}$$

$$n = 6$$
 buah

$$A_s = \frac{1}{4} \times \pi \times d^2 \times n$$

$$A_s = \frac{1}{4} \times 3,14 \times 16^2 \times 6$$

$$A_s = 1205,76 \text{ mm}$$

Kontrol nilai A_s :

$$A_s > A_s$$
 pakai

$$1205 > 324 \,\mathrm{mm} \,\,\,(OK)$$

Menghitung nilai momen nominal (M_n) dan momen ultimate (M_u) :

$$a = \frac{A_s \times fy}{0.85 \times f'c \times L}$$

$$a = \frac{1205 \times 400}{0.85 \times 25 \times 600}$$

$$a = 37,82 \text{ mm}$$

$$c = \frac{a}{\beta}$$

$$c = \frac{37,82}{0,85}$$

$$c = 44,50 \text{ mm}$$

$$\varepsilon c = \frac{d-c}{c}$$

$$\varepsilon c = \frac{225 - 44,50}{44,50}$$

$$\varepsilon c = 4,05$$

Karena nilai $\varepsilon c > 0,005$ maka nilai φ adalah 0,9.

$$M_n = 0.85 \times f'c \times a \times b \times \left(d - \frac{a}{2}\right)$$

$$M_n = 0.85 \times 25 \times 37.82 \times 600 \times \left(225 - \frac{37.82}{2}\right)$$

 $M_n = 99396158 \text{ kNmm}$

$$M_u = \phi \times M_n$$

$$M_u = 0.9 \times 99396158$$

$$M_u = 89456543 \text{ kNmm}$$

Kontrol nilai M₁₁:

$$M_u > M_u$$

89456543 kNmm > 486,54 kNm (OK)

Tulangan tekan atas diberikan 20% tulangan utama :

 $20\% \times A_s$

 $20\% \times 1205$

= 241,15 mm

Kontrol:

 $A_s > A_s \min$

795,99> 324 mm (OK)

Dari hasil analisis perhitungan yang telah dilakukan maka didapatkan dimensi *pile cap*, dengan panjang 600 mm, lebar 600 mm dan tinggi 300 mm. Dengan tulangan bawah D16, jarak 100 mm dan jumlah tulangan 6 buah. Tulangan atas didapatkan dari 20% As tulangan bawah dengan dimateret tulangan atas adalah D13 dan jarak antar tulangan 100 mm dan jumlah tulangan adalah 6 buah.

4.3 Analisis bahaya dan pengendalian risiko

Keselamatan dan kesehatan kerja adalah salah satu faktor yang paling penting dalam kelancaran suatu proyek konstruksi. Suatu proyek atau perusahaan harus mampu mencegah dan menangani masalah keselamatan kerja yang ada dalam suatu proyek tersebut. Untuk meminimalisir terjadinya kecelakaan kerja, maka perlu dilakukan analisis risiko potensi bahaya beserta pengendaliannya. Dalam menganalisis bahaya dan pengendaliannya ada beberapa metode seperti metode

JSA (*job safety analysis*), *Hazard Identification and Risk Assessment* (HIRA) / HIRADC, *Fault Tree Analysis* (FTA) dan metode lainnya. Pada penelitian ini metode analisis bahaya dan risisko yang digunakan adalah metode *Hazard Identification and Risk Assessment* (HIRA) / HIRADC karena metode ini termasuk metode yang analisisnya sistematis, menyeluruh, dan terstruktur dalam mengidentifikasi berbagai masalah yang memengaruhi proses dan risiko terkait peralatan yang dapat membahayakan orang atau pekerja, peralatan atau sistem yang ada dalam proyek tersebut. HIRADC berkaitan langsung dengan upaya pencegahan dan manajemen bahaya yang digunakan untuk menetapkan tujuan dari rencana keselamatan dan kesehatan kerja.

Data yang digunakan dalam penelitian ini merupakan data sekunder yang diperoleh melalui pengumpulan data dari salah satu sumber (perusahaan) yang telah melaksanakan pekerjaan lift dan beberapa referensi lain. Data yang diperoleh berupa daftar kegiatan atau aktivitas beserta potensi bahaya yang mungkin terjadi pada aktivitas tersebut. Proses pengolahan data dengan menggunakan metode HIRADC dapat dilihat pada pembahasan berikut ini.

4.4.1 Identifikasi Bahaya (Hazard Identification)

Identifikasi bahaya dilakukan untuk mengenali berbagai potensi bahaya secara menyeluruh, dimana proses ini bertujuan untuk menilai potensi bahaya yang mungkin timbul akibat bahan, alat, atau sistem yang ada pada lift barang sehingga dapat dilakukan atau direncanakan pengendalian risiko yang efektif. Bahaya yang akan diidentifikasi berasal dari bahaya fisik, biologi, kimia, ergonomi, dan psikologi. Identifikasi risiko lift barang yang telah dilakukan dilampirkan dalam bentuk tabel sebagai berikut.

Tabel 4. 37 Identifikasi pada operasional lift barang

Stages of work	Potential hazards	Possible risk	
Loading barang	Adanya celah antara carlift dengan lantai	Terjepit di area celah	

Stages of work	Potential hazards	Possible risk
	Tinggi carlift yang tidak sesuai/aman	Terbentur ke bagian atas car lift
	Pintu tidak tertutup rapat	Terjepit pintu liftKerusakan barang
Operasi lift	Overload	 Kerusakan mekanis Kegagalan sling rope Kerusakan barang krn terjatuh dari ketinggian Cedera atau luka berat
	sling rope mengalami aus (putus)	 Kerusakan barang krn terjatuh dari ketinggian Operator mengalami Cedera atau luka/benturan Kebisingan (telinga sakit)
	Roda dan rel macet	carlift tidak berjalan lancarLuka atau cedera berat
	Barang bergeser atau tidak stabil	Kerusakan barang krn terjatuh dari ketinggianLuka atau cedera berat
	Malfungsi sistem lift	 Lift berhenti mendadak/barang terjebak Kerusakan barang krn terjatuh dari ketinggian Luka atau cedera berat
	Korsleting / komponen rusak	TersengatKebakaran
	Leveling lift yang tidak akurat	carlift berhenti tidak tepat pada lantai tertentu
Unloading	Adanya celah antara carlift dengan lantai tidak sama	Terjepit diantara celah car lift dan lantai
barang	Tinggi carlift yang tidak sesuai	Terbentur ke bagian atas car lift
	Pintu tidak tertutup rapat	Terjepit pintu liftKerusakan barang

4.4.2 Penilaian Risiko (Risk Assessment)

Setelah dilakukan identifikasi bahaya pada setiap tahapan pekerjaan maka dilakukan penilaian risiko yang bertujuan untuk mengevaluasi dan menentukan sejauh mana risiko terkait dengan tahapan kegiatan operasional lift barang. Penilaian risiko diukur dengan tingkat kemungkinan terjadinya bahaya (*likelihood*) dan keparahan (*severity*) dengan pertimbangan kondisi atau situasi yang harus dilindungi, seperti manusia, aset, dan lingkungan. Berikut terlampir penilaian risiko awal dan akhir yang ditampilkan dalam bentuk tabel di bawah ini.

Tabel 4. 38 Penilaian risiko awal

Ctaran	Stores of		an risiko av	/al
Stages of work	Potential hazards	Likelihood	Severity	Risk
WOLK		1	S	Level
	Adanya celah antara carlift	4	1	4
Loading	dengan lantai	4	1	4
barang	Tinggi carlift yang tidak	3	1	3
Darang	sesuai/aman	3	1	3
	Pintu tidak tertutup rapat	3	2	6
	Overload	5	3	15
	sling rope mengalami aus (putus)	2	3	6
Operasi	Roda dan rel macet	3	2	6
lift	Barang bergeser atau tidak stabil	3	2	6
	Malfungsi sistem lift	2	2	4
	Korsleting / komponen rusak	2	3	6
	Leveling lift yang tidak akurat	2	1	2
I Inlandina	Adanya celah antara carlift	4	1	4
Unloading	dengan lantai tidak sama	4	1	4
barang	Tinggi carlift yang tidak sesuai	3	1	3
	Pintu tidak tertutup rapat	3	2	6

Penilaian risisko awal didapatkan hasil bahwa terdapat 1 risiko ekstrem, 7 risko sedang dan 5 risiko rendah. Berdasarkan penilaian risiko awal diatas potensi bahaya dengan tingkat risiko yang paling tinggi adalah *overload* yang terjadi ketika operasional lift (setelah barang dimasukkan kedalam car lift). Hal ini terjadi karena muatan atau beban lift barang yang dimasukkan kedalam lift barang melebihi kapasitas lift yang direncanakan. *Overload* ini dapat menyebabkan motor mengalami pemanasan berlebih (*overheating*) yang mengakibatkan kerusakan pada komponen seperti lilitan kawat dan inti besi motor, bahkan dapat menyebabkan kerusakan permanen atau korsleting listrik. Selain itu, beban berlebih juga dapat

merusak komponen mekanis dan elektris lift, meningkatkan risiko kegagalan sistem, dan berpotensi menimbulkan kecelakaan serius. Oleh karena itu, penting untuk memasang sensor beban dan sistem proteksi overload agar kapasitas angkut lift tetap dalam batas aman, menjaga kestabilan kecepatan motor, serta memperpanjang umur dan keandalan sistem lift barang. Risiko sedang juga sangat perlu diperhatikan untuk mengurangi kemungkinan kejadian atau dampak risiko yang terjadi.

Setelah dilakukannnya identifikasi bahaya dan penilaian risiko awal maka dilakukan penilaian risiko akhir, dengan mempertimbangkan rekomendasi saran atau langkah-langkah pengendalian yang dilakukan peneliti guna menciptakan kondisi operasional yang aman dan nyaman dengan menunjukkkan hasil ldari pengendalian yang dilakukan dengan fokus terhadap perubahan tingkat risiko setelah penerapan pengendalian.

Tabel 4. 39 Penilaian risiko akhir

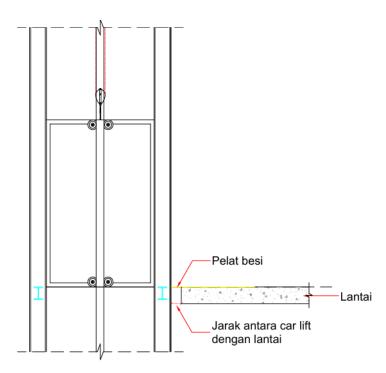
Stages of work		Recommended	Penilaia	Penilaian risiko akhir	
	Potential hazards	procedures and	Likelihood	Severity	Risk
WOIK		actions	1	S	Level
	Adanya celah	Penggunaan			
	antara carlift	pelat sebagai	4	1	4
	dengan lantai	penutup celah			
	Tinggi carlift	Perencanaan			
Loading	yang tidak	desain tinggi	3	1	3
barang	sesuai/aman	carlift yang	3	1	3
barang	Sesual/ailiail	sesuai			
	Pintu tidak tertutup rapat	Menggunakan			
		pengunci pintu	3	2	6
		dari dalam dan			O
		luar			
		Gunakan			
	Overload	sensor	5	3	15
	Overroud	overload dan	J	3	13
		alarm			
Operasi	sling rope	Safety Brake			
lift	mengalami aus	System (Rem	2	3	6
	(putus)	Keamanan	2	3	O
		Otomatis)			
	Roda dan rel	Box oli untuk	3	2	6
-	macet	pengaman rel		<i>_</i>	0

		Recommended	Penilaia	n risiko ak	hir
Stages of	Potential hazards	procedures and	Likelihood	Severity	Risk
work		actions	1	S	Level
		agar tidak aus			
		akibat gesekan			
	Barang bergeser	Susun muatan	3	2	6
	atau tidak stabil	rapi dan stabil		<i></i>	0
		Sistem Backup			
	Malfungsi sistem	Daya (UPS	_		
	lift	atau Battery	2	2	4
	1110	Backup) (ke			
		power panel)			
	Korsleting /	Emergency	2	3	6
	komponen rusak	buttom			
	Leveling lift	sistem kontrol	2	1	2
	yang tidak akurat	elevator			
	Adanya celah antara carlift dengan lantai	Penggunaan pelat sebagai	4	1	4
Unloading	tidak sama	penutup celah			
barang		Perencanaan			
	Tinggi carlift	desain tinggi	3	1	3
	yang tidak sesuai	carlift yang sesuai	3	1	3
	Pintu tidak	SOP yang	3	2	6
	tertutup rapat	ketat	3	<i>L</i>	0

Penilaian risiko menunjukkkan bahwa penerapan langkah-langkah pengendalian pada lift barang yang telah dilakukan dapat menurunkan tingkat risiko pada semua bahaya yang sudah terindetifikasi sebelumnya. Berikut merupakan rangkuman hasil analisis potensi bahaya dan pengendalian risiko yang dilampirkan dalam bentuk tabel.

Tabel 4. 40 Dampak dan rekomendasi/saran

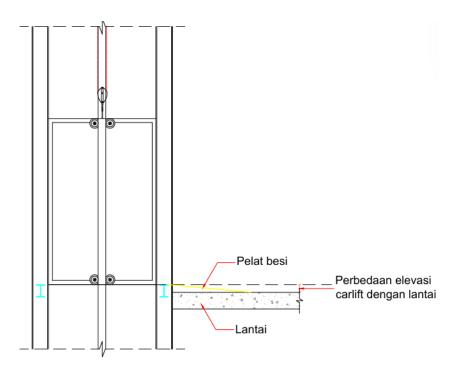
Stages of work	Potential hazards	Possible risk	Recommended procedures and actions
Loading barang	Adanya celah antara carlift dengan lantai	Terjepit di area celah	Pelat penutup celah
	Perbedaan elevasi antara lantai car lift dengan lantai beton	Tersandung atau terjatuh	Pelat yang dipasang miring


	Tinggi carlift yang tidak sesuai/aman	Terbentur ke bagian atas car lift	Tinggi carlift yang sesuai
	Pintu tidak tertutup rapat	Terjepit pintu liftKerusakan barang	Pengunci pintu
Operasi lift	Overload	 Kerusakan mekanis Kegagalan sling rope Kerusakan barang krn terjatuh dari ketinggian Cedera atau luka berat 	Sensor overload dan alarm
	sling rope mengalami aus (putus)	 Kerusakan barang krn terjatuh dari ketinggian Operator mengalami Cedera atau luka/benturan Kebisingan (telinga sakit) 	Safety Brake System (Rem Keamanan Otomatis)
	Roda dan rel macet	 Car lift tidak berjalan lancar Luka atau cedera berat 	Box oli
	Barang bergeser atau tidak stabil	 Kerusakan barang krn terjatuh dari ketinggian Luka atau cedera berat 	Muatan tersusun rapi dan stabil
	Malfungsi sistem lift	 Lift berhenti mendadak/ba rang terjebak Kerusakan barang krn terjatuh dari ketinggian 	Sistem Backup Daya (UPS atau Battery Backup) (ke power panel)

		 Luka atau cedera berat 	
	Korsleting / komponen rusak	TersengatKebakaran	Emergency buttom
Unloadi ng barang	Leveling lift yang tidak akurat	carlift berhenti tidak tepat pada lantai tertentu	Sistem kontrol elevator (tombol elevator)
	Adanya celah antara carlift dengan lantai tidak sama	Terjepit diantara celah car lift dan lantai	Pelat penutup celah
	Perbedaan elevasi antara lantai car lift dengan lantai beton	Tersandung atau terjatuh	Pelat yang dipasang miring
	Tinggi carlift yang tidak sesuai	Terbentur ke bagian atas car lift	Tinggi carlift yang sesuai
	Pintu tidak tertutup rapat	 Terjepit pintu lift Cedera atau luka Kerusakan barang 	Pengunci pintu

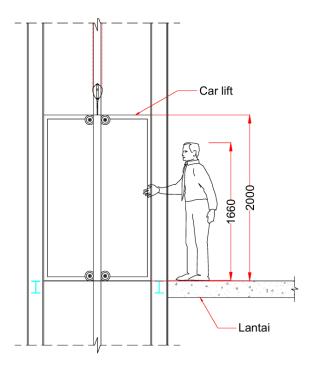
4.4.3 Implementasi mitigasi risiko dalam desain

Berikut merupakan hasil dari pengendalian risiko yang telah disusun dalam bentuk tabel dan masing-masing alat yang digunakan dilampirkan dalam bentuk gambar serta penjelasan dari setiap alat. Tabel tersebut dapat diihat pada tabel dibawah ini.


1. Pelat penutup celah

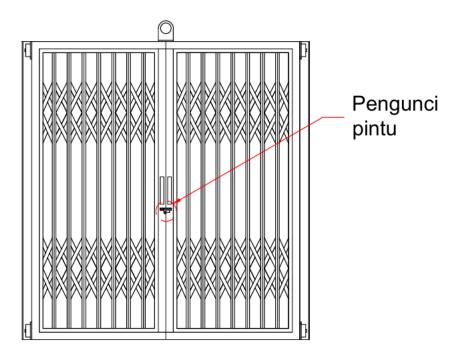
Gambar 4. 11 Letak pelat besi sebagai penutup celah

Pelat penutup celah dipasang apabila terdapat celah antara lantai car lift dengan lantai beton, berfungsi sebagai penutup agar celah tersebut tidak membahayakan pengguna serta menjaga keamanan dan kenyamanan saat naik turun lift. Pelat ini harus terbuat dari bahan yang kuat dan dipasang secara presisi agar mampu menahan beban serta mencegah benda kecil atau kaki pengguna terperosok ke dalam celah tersebut


2. Pelat untuk elevasi yang berbeda

Gambar 4. 12 Letak pelat besi apabila ada perbedaan tinggi/elevasi car lift dengan lantai

Pelat yang dipasang miring digunakan sebagai solusi apabila terdapat perbedaan tinggi atau elevasi antara lantai car lift dengan lantai beton di sekitarnya. Pelat miring ini berfungsi sebagai bidang transisi untuk mengurangi risiko cedera, benturan atau kerusakan akibat perbedaan elevasi tersebut. Selain itu, pemasangan pelat miring juga memastikan aksesibilitas dan kelancaran operasional car lift dalam bangunan yang memiliki selisih ketinggian antar lantai.

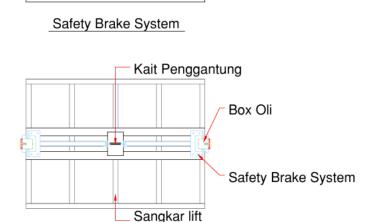

3. Penyesuaian tinggi *car* lift

Gambar 4. 13 Penyesuaian tinggi car lift

Tinggi *car* lift barang harus dipertimbangkan dengan cermat untuk mencegah risiko cedera pada operator maupun kerusakan barang. Tinggi kabin lift yang memadai harus memungkinkan operator berdiri dengan nyaman tanpa risiko kepala terantuk bagian atas kabin atau ruang angkut. Selain itu, ruang vertikal yang cukup juga penting agar barang yang diangkut tidak mengalami benturan atau kerusakan selama proses pengangkutan. Standar tinggi kabin biasanya disesuaikan dengan kapasitas dan jenis barang yang diangkut. Dengan memperhatikan tinggi dan dimensi lift yang tepat, keselamatan operator dan keutuhan barang dapat terjamin, sekaligus mengoptimalkan efisiensi operasional.

4. Pengunci pintu

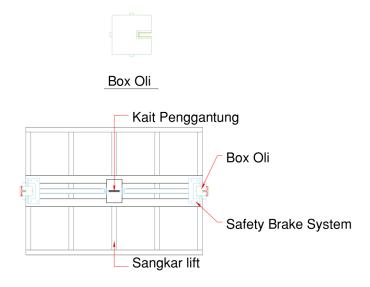
Gambar 4. 14 Letak pengunci pintu pada car lift


Penggunaan pengunci pintu pada *car* lift barang sangat penting untuk mencegah pintu terbuka saat operasional lift berlangsung. Sistem pengunci ini bekerja dengan mekanisme kait pengunci dan blok pengunci yang memastikan pintu tertutup rapat sebelum lift dapat bergerak. Dengan demikian, pengunci pintu mencegah terjadinya pembukaan pintu secara tidak sengaja yang dapat menyebabkan barang jatuh atau rusak serta menghindari risiko cedera pada operator atau pengguna lift selama proses pengangkutan barang. Selain itu, pengunci pintu juga berfungsi sebagai bagian dari sistem keamanan yang memastikan lift hanya beroperasi ketika pintu dalam keadaan terkunci penuh, sehingga meningkatkan keselamatan operasional secara keseluruhan.

5. Sensor *overload*

Weight Measuring Device Lift atau Overload Sensor pada lift barang berfungsi sebagai alat sensor beban yang mengukur berat total muatan yang diangkut oleh lift tersebut. Sensor ini bekerja dengan mendeteksi berat beban menggunakan teknologi seperti sel beban (load cell) yang mengubah gaya berat menjadi sinyal listrik, sehingga sistem kontrol lift dapat memantau dan mencegah operasi saat terjadi kelebihan beban. Jika terjadi

overload pada lift barang maka sistem akan otomatis membunyikan alarm, memberikan tanda atau peringatan bahwa beban yang dimasukkan telah melebihi kapasitas angkut lift. Dengan demikian, perangkat ini sangat penting untuk menjamin keselamatan operasional lift barang, mencegah kerusakan mekanis, dan mengoptimalkan kinerja lift dengan memastikan beban yang diangkut tidak melebihi kapasitas yang telah ditentukan.


6. Safety Brake System (Rem Keamanan Otomatis)

Gambar 4. 15 Safety brake system

Safety Brake System (Rem Keamanan Otomatis) pada lift barang adalah sistem pengaman yang dirancang untuk mencegah terjadinya kecelakaan fatal akibat kegagalan mekanis, seperti putusnya kabel atau rantai pengangkat. Sistem ini bekerja secara otomatis dengan mengunci pergerakan lift ketika terjadi kecepatan jatuh yang tidak normal atau gangguan mendadak pada komponen pengangkat, sehingga platform lift tidak jatuh bebas dan tetap berada pada posisinya. Rem ini bisa berupa electromagnetic brake, mechanical interlock brake, atau gravity brake yang mampu menahan beban berat dan menjaga kestabilan operasional lift barang, terutama yang berkapasitas besar dan berkecepatan tinggi. Dengan adanya safety brake system, risiko kecelakaan kerja dapat diminimalkan, melindungi pekerja dan barang yang diangkut, serta meningkatkan efisiensi dan umur pakai lift barang itu sendiri.

7. Box Oli

Gambar 4. 16 Box Oli

Box oli pada lift barang berfungsi sebagai penampung oli pelumas yang ditempatkan di atas sangkar lift, tepatnya untuk melumasi rel (rail) lift. Fungsi utama pelumasan ini adalah mengurangi gesekan antara roda (guide shoe) dengan rel sehingga roda dan rel tidak cepat aus dan tetap bergerak lancar tanpa macet. Jika box oli berfungsi dengan baik, oli yang menetes ke rel akan membentuk lapisan pelumas yang mengurangi gaya gesek dan mencegah roda serta rel mengalami macet atau tersendat saat lift bergerak. Sebaliknya, jika pelumasan tidak memadai atau box oli tidak berfungsi, gesekan antara roda dan rel akan meningkat, yang dapat menyebabkan roda dan rel menjadi macet, mempercepat kerusakan komponen, dan mengganggu kelancaran operasi lift.

8. Sistem *Backup Daya* (UPS atau *Battery Backup*) (ke power panel)

Sistem *Backup* Daya berupa UPS (*Uninterruptible Power Supply*) atau *battery backup* pada panel daya lift barang berfungsi sebagai sumber daya cadangan yang memastikan lift tetap beroperasi saat terjadi gangguan listrik atau pemadaman mendadak. Dengan adanya UPS, lift barang dapat menurunkan posisi secara otomatis ke tempat aman tanpa berhenti di tengah perjalanan, sehingga mencegah risiko kecelakaan dan kerusakan mekanis akibat kehilangan daya secara tiba-tiba. Penggunaan UPS pada lift barang

sangat penting untuk menjaga kelancaran operasional dan keselamatan kerja, terutama di lingkungan yang sangat bergantung pada lift untuk pengangkutan barang.

9. Sistem kontrol lift barang

Panel kontrol pada lift barang berfungsi sebagai pusat pengaturan dan pengendalian seluruh sistem operasional lift. Panel ini memastikan lift dapat bekerja dengan aman, efisien, dan sesuai perintah. Selain panel, sisitem ini juga dilengkapi dengan tombol yang mberfungsi untuk mengarahkan lift atau mengatur sistem operasional lift tersebut. Berikut merupakan tombol yang digunakan pada lift barang.

Tabel 4. 41 Simbol, nama dan fungsi tombol lift barang

Simbol	Tombol	Fungsi
	Emergency Stop (tombol darurat)	Untuk menghentikan operasi lift secara mendadak dalam keadaan darurat. Ketika tombol ini ditekan, aliran listrik ke sistem kontrol lift akan terputus sehingga lift langsung berhenti demi mencegah kecelakaan atau kerusakan.
E	Emergency/Reset/Call	Mengaktifkan mode darurat, mereset sistem setelah emergency stop ditekan, atau memanggil lift ke lantai tertentu (fitur ini tergantung pada desain lift barang masing-masing).
3	Lantai 3	Untuk memerintahkan lift menuju lantai 3. Ketika tombol ini ditekan, lift akan bergerak ke lantai 3.
2	Lantai 2	Untuk memerintahkan lift menuju lantai 2. Ketika tombol ini ditekan, lift akan bergerak ke lantai 2.

Simbol	Tombol	Fungsi
1	Lantai 1	Untuk memerintahkan lift menuju lantai 1. Ketika tombol ini ditekan, lift akan bergerak ke lantai 1.

4.4 Gambar kerja

Gambar kerja merupakan salah satu elemen yang paling penting dalam dunia konstruksi. Karena gambar kerja memuat informasi detail teknis seperti dimensi, material, spesifikasi teknik, metode konstruksi, hingga intruksi khusus yang harus diikuti oleh tim pelaksana dilapangan. Gambar kerja juga berfungsi sebagai dokumentasi proyek, meminimalkan kesalahan, dan mempermudah komunikasi. Berikut gambar kerja hasil dari analisis perhitungan peneliti yang dilampirkan di masing-masing lampiran.

1. Site Plan

Site plan merupakan gambar tata letak suatu elemen desain yang ditempatkan dalam sebuah bidang menggunakan media yang sebelumnya sudah dikonsep terlebih dahulu. Gambar site plan akan menjukkan akses ruang dari tapak, perletakan ruang dan hubungannya dengan ruang lain dan dengan tapak, juga view yang didapat setiap ruang. Site plan dapat dilihat pada Lampiran Gambar kerja.

2. Denah

Denah merupakan tampak atas bangunan yang dipotong horizontal untuk memperlihatkan bagian lantai bangunan. Denah akan menjelaskan secara detail dengan keterangan skala, ukuran ruang, nama ruang, ketinggian ruang, bukaan pada ruang, perletakan furnitur di dalam ruang, arah mata angin sebagai acuan perletakan ruang di dalam tapak, serta garis potongan dan arah pandangnya. Denah lift barang dapat dilihat pada Lampiran Gambar kerja.

3. Potongan atau section

Gambar potongan akan menjukkan struktur yang digunakan termasuk dimensi , jarak perletakannya, dan bahan yang digunakan. Gambar potongan biasangan di potong secara vertikal dan horizontal untuk

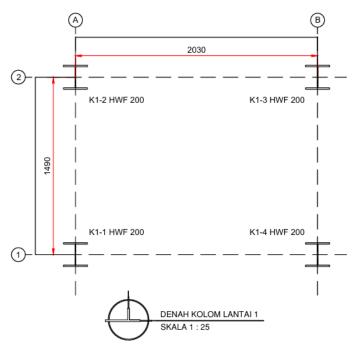
melihat sisi dalam bangunan dari kedua sisi. Gambar potongan dapat dilihat pada **Lampiran Gambar kerja.**

4. Tampak

Gambar tampak adalam suatu bangunan akan Menggambarkan wujud luar fisik bangunan secara dua dimensi. Gambar tampak dapat digambar secara plain atau ditambah efek bayangan untuk mempertegas dimensi atau maju mundurnya bidang pada bangunan. Pada gambar tampak akan disajikan dimensi bangunan, proporsi, gaya arsitektur, warna dan material bangunan, serta estetika bangunan. Arah gambar tampak bisa disesuaikan dengan arah mata angin, atau pun view tertentu yang ingin ditampilkan. Gambar potongan dapat dilihat pada **Lampiran Gambar kerja.**

5. Gambar detail

Gambar detaik akan menjelaskan berbagai gambar kerja secara lebih detail lagi. Misalnya gambar detail struktur pondasi, detail sambungan, sampai detail desain furniture. Detail gambar struktur dapat dilihat pada pada Lampiran Gambar kerja.


4.5 Rencana anggaran biaya (RAB)

Untuk menghitung rencana anggaran biaya (RAB) lift barang pada penelitian ini digunakan lanagkah-langkah perhitungan sebagai berikut.

4.4.1 Gambar

Gambar kerja memiliki fungsi yang sangat penting dalam menghitung Rencana Anggaran Biaya (RAB) karena menjadi dasar utama untuk menentukan jenis, volume, dan spesifikasi pekerjaan yang akan dilaksanakan dalam suatu proyek konstruksi. Dengan gambar kerja yang lengkap dan detail, tim perencana dapat mengidentifikasi semua komponen pekerjaan, mulai dari ukuran, bentuk, hingga jenis material yang digunakan, sehingga memudahkan perhitungan volume pekerjaan secara akurat. Selain itu, gambar kerja juga membantu memperkirakan kebutuhan tenaga kerja dan alat yang diperlukan, sehingga RAB yang disusun menjadi lebih tepat dan efisien. Dengan demikian, gambar kerja tidak hanya berperan sebagai panduan teknis dalam pelaksanaan konstruksi, tetapi juga sebagai alat utama untuk menyusun anggaran biaya yang realistis dan menghindari

pemborosan atau kekurangan dana selama proses pembangunan. Berikut merupakan contoh gambar kerja kolom baja pada lantai 1 yang digunakan dalam menghitung volume pekerjaan.

Gambar 4. 17 Denah kolom lantai 1

4.4.2 Volume pekerjaan

Perhitungan masing-masing volume pekerjaan disesuaikan dengan gambar kerja yang telah ditentukan agar didapatkan hasil yang mendekati kenyataan. Untuk gedung bertingkat perhitungan volume dihitung secara terpisah sesuai dengan dimensi dan spesifikasi yang telah ditentukan. Cara menghitung volume kolom baja dan cara perhitungan menggunakan data lantai 1 adalah sebagai berikut:

Kolom Hbeam 200x200x8x12:

 $Kolom = (Panjang profil \times jlh) \times Berat Baja$

 $Kolom = (4,25 \text{ m} \times 4) \times 49,9 \text{ kg}$

Kolom = 843 kg

Maka total kebutuhan baja Hbeam 200x200x8x12 pada lantai 1 dalam satuan kg pada lantai 1 adalah 843 kg.

4.4.2 AHSP dan HSP

Analisa harga satuan pekerjaan (AHSP) digunakan untuk menghitung harga satuan pekerjaan pekerjaan konstruksi yaitu perkalian kebutuhan bahan, upah peralatan dengan harga bahan konstruksi yang digunakan, standar pekerja dan harga sewa/pembelian alat yang akan dipakai untuk menyelesaikan pekerjaan per satuan. Penggunaan harga dari standar Kota Balikpapan dalam perhitungan Analisa Harga Satuan Pekerjaan (AHSP) dilakukan berdasarkan Peraturan Wali Kota Balikpapan Nomor 16 Tahun 2024 tentang Standar Harga Satuan Daerah Tahun Anggaran 2025, yang menetapkan harga satuan pekerjaan sebagai acuan resmi dalam penyusunan Rencana Anggaran Biaya (RAB) dan dokumen pelaksanaan anggaran di wilayah Kota Balikpapan. Standar harga ini mencakup komponen biaya tenaga kerja, bahan, dan alat yang disesuaikan dengan kondisi lokal, sehingga memastikan perhitungan AHSP menjadi lebih akurat, transparan, dan sesuai dengan ketentuan pemerintah daerah setempat.

Perhitungan Analisis Harga Satuan Pekerjaan (AHSP) dan Harga Satuan Pekerjaan (HSP) untuk lift barang dilakukan dengan mengacu pada Pedoman AHSP Bidang Cipta Karya dan Perumahan sebagaimana diatur dalam Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat (Permen PUPR) Nomor 8 Tahun 2023 serta Surat Edaran Direktur Jenderal Bina Konstruksi (SE Dirjen BK) Nomor 68 Tahun 2024. Permen PUPR No. 8 Tahun 2023 menetapkan bahwa AHSP adalah perhitungan kebutuhan biaya tenaga kerja, bahan, dan peralatan untuk memperoleh harga satuan pekerjaan konstruksi lift barang.

Berikut merupakan salah satu contoh AHSP yang digunakan dalam perhitungan struktur kolom baja Hbeam 200x200x8x12. AHSP setiap pekerjaan dapat dilihat pada **Lampiran AHSP**.

```
Tenaga kerja (A):

Jumlah harga =(koefisien ×harga satuan)

Jumlah harga =(0,06×Rp141.300,00)

Jumlah harga = Rp8.478,00

Bahan (B):

Jumlah harga =(koefisien ×harga satuan)

Jumlah harga =(1,15×Rp19.300)
```

Jumlah harga = Rp22.195,00

Peralatan (C):

Jumlah harga = (koefisien \times harga satuan)

Karena tidak ada peralatan yang dibutuhkan untuk pekerjaan ini maka tidak perlu dihitung.

Jumlah Harga Tenaga Kerja, Bahan dan Peralatan (D):

D = A+B+C = Rp21.654,60+Rp21.654,60+0

D = A + B + C = Rp43.849,60

Biaya Umum dan Keuntungan (10% - 15%) x D (E):

 $E = 10\% \times D = 10\% \times Rp43.849,60$

E = Rp4.384,96

Maka Harga Satuan Pekerjaan dapat dihitung dengan:

Harga satuan pekerjaan = D + E

Harga satuan pekerjaan = Rp43.849,60 + Rp4.384,96

Harga satuan pekerjaan = Rp48.234,56

Berikut merupakan tabel hasil dari perhitungan pekerjaan profil Hbeam 200x200x8x12 yang telah dilakukan.

Tabel 4. 42 Pekerjaan profil Hbeam 200 x 200 x 8 x 12

Satuan		Jenis pekerjaan Profil Hbeam 200 x 200 x 8 x 12		
Satuan			kg	
Uraian	Satuan	Koefisien	Harga	Jumlah
			Satuan(Rp)	Harga (Rp)
Tenaga Kerja				
Pekerja	OH	0,06	Rp141.300,00	Rp8.478,00
Tukang Las	OH	0,06	Rp188.400,00	Rp11.304,00
Kepala Tukang	OH	0,006	Rp212.000,00	Rp1.272,00
Mandor	ОН	0,003	Rp200.200,00	Rp600,60
	Jumlah Harga Tenaga Kerja Rp21.654,60			
Bahan				
Baja Profil Hbeam	kα	1 15	Rn10 300	Rp22.195,00
200 x 200 x 8 x 12	ng	1,13	Кр19.300	Kp22.193,00
	Jumlah Harga Bahan Rp22.195,00			Rp22.195,00
Peralatan	·	·		·
	Jumlah Harga Alat		Rp0,00	
Jumlah Harga Tenaga Kerja,				Rp43.849,60
	Tenaga Kerja Pekerja Tukang Las Kepala Tukang Mandor Bahan Baja Profil Hbeam 200 x 200 x 8 x 12 Peralatan Jumlah Harga	Tenaga Kerja Pekerja OH Tukang Las OH Kepala Tukang OH Mandor OH Jum Bahan Baja Profil Hbeam 200 x 200 x 8 x 12 Peralatan Jumlah Harga	Tenaga Kerja Pekerja OH 0,06 Tukang Las OH 0,06 Kepala Tukang OH 0,006 Mandor OH 0,003 Jumlah Harga Te Bahan Baja Profil Hbeam 200 x 200 x 8 x 12 Jumlah Harga Peralatan Jumlah Harga Jumlah Harga	Oraian Satuan Roefisien Satuan(Rp) Tenaga Kerja OH 0,06 Rp141.300,00 Tukang Las OH 0,06 Rp188.400,00 Kepala Tukang OH 0,006 Rp212.000,00 Mandor OH 0,003 Rp200.200,00 Jumlah Harga Tenaga Kerja Bahan kg 1,15 Rp19.300 Jumlah Harga Bahan Peralatan Jumlah Harga Alat Jumlah Harga Alat

Jenis pekerjaan		Profil Hbeam 200 x 200 x 8 x 12			
	Satuan			kg	
No	Uraian	Satuan	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)
	Bahan dan			· <u>-</u> ·	
	Peralatan				
	(A+B+C)				
	Biaya Umum dan				
E	Keuntungan (10%				Rp4.384,96
	- 15%) x D				
F	Harga Satuan				Dn/18 22/1 56
	Pekerjaan (D+E)				Rp48.234,56

4.4.2 Rencana Anggaran Biaya

Setelah dilakukan perhitungan nilai harga satuan pekerjaaan maka dilakukan perhitungan RAB perencanaan lift barang di Gedung A Institut Teknologi Kalimantan yang disusun dengan mempertimbangkan aspek teknis dan fungsional lift sebagai alat transportasi vertikal yang esensial untuk mobilitas barang dalam gedung bertingkat. Perencanaan ini mencakup spesifikasi teknis lift barang, kapasitas angkut, dimensi sangkar, serta tata letak ruang mesin, shaft, dan pit yang sesuai dengan standar keselamatan dan efisiensi operasional. Estimasi biaya dalam RAB meliputi instalasi, serta komponen utama lift seperti sistem penggerak, alat pengaman, dan mekanisme kontrol yang dirancang agar memenuhi kebutuhan operasional kampus secara optimal. Berikut merupakan hasil perhitungan RAB yang telah dilakukan peneliti.

Tabel 4. 43 Rekap rencana anggaran biaya (RAB) pekerjaan lift barang

No	Uraian pekerjaan	Total harga
I	Pekerjaan Persiapan	2.075.305,26
II	Pekerjaan Tanah	1.686.291,23
III	Pekerjaan Pondasi Bore Pile dia. 0,3 m	13.753.206,72
IV	Pekerjaan Beton	116.580.749,22
V	Pekerjaan Baja	169.049.193,83
VI	Pekerjaan Arsitektur	75.484.695,00

VII Pekerjaan MEP	13.817.245,00
Jumlah	392.446.686,25
PPN (11%)	43.169.135,49
Total	435.615.821,74
Terbilang	Empat ratus tiga puluh lima juta enam ratus lima belas ribu delapan ratus dua puluh satu rupiah

BAB V

PENUTUP

5.1 Kesimpulan

Telah dilakukan penelitian terkait perencanaan lift barang menggunakan struktur material baja pada di Gedung A, Institut Teknologi Kalimantan. Penelitian ini menghasilkan beberapa nilai parameter yang dapat menjadi dasar perencanaan lift barang yang akan di bangun pada gedung A. Berikut merupakan kesimpulan dari penelitian yang akan menjawab pertanyaan-pertanyaan yang timbul pada awal penelitian.

- 1. Spesifikasi teknis lift barang yang didapatkan dari hasil perhitungan yang telah dilakukan peneliti adalah sebagai berikut. Pertama kapasitas lift yang digunakan adalah 500 kg. Parameter kedua, dimensi sangkar atau kereta lift didapatkan dimensi 1,83 X 1,3 X 2,1 meter. Parameter ketiga, didadapatkan jenis tali/sling material baja dengan diameter tali 8 mm. Parameter keempat, daya motor listrik yang dihasilkan dari perhitungan peneliti adalah 17 HP.
- 2. Peneliti telah melakukan permodelan dan analisis penampang struktur yang telah aman digunakan dengan dengan dimensi lift barang adalah 2,23 m dan 1,69 m. Untuk struktur atas lift barang , profil kolom yang digunakan adalah Hbeam 200x200x8x12 mm, balok dan sistem pengaku lateral (bresing) menggunakan profil baja IWF 150x100x6x9 mm. Sambungan elemen baja menggunakan pelat siku 90x90x10 mm dan jumlah baut sambungan adalah 2 buah dengan diameter baut 16 mm serta sambungan bresing menggunakan sambungan baut dan las sudut dengan tebal las 10 mm. Sambungan baja dengan beton menggunakan base plate 300x300x17 mm dengan angkur baut diameter M12. Untuk struktur bawah, pondasi lift barang menggunakan bor pile diameter 30 cm dengan kedalaman tiang adalah 8,6 meter mencapai tanah keras. Adapun dimensi pedestal yang digunakan untuk menyalurkan beban dari struktur atas ke pondasi adalah 0,35x0,35x0,35 m, dengan dimensi pile cap tiang tunggal adalah 0,6x0,6x0,6 m.

- 3. Total rencana anggaran biaya (RAB) yang dihasilkan dari perhitungan yang dilakukan peneliti adalah Rp 435.615.821,74, terbilang Empat ratus tiga puluh lima juta enam ratus lima belas ribu delapan ratus dua puluh satu rupiah.
- 4. Analisis bahaya dan pengendalian risiko yang dilakukan peneliti pada operasional lift menghasilkan potensi bahaya yang paling tinggi adalah dari kegiatan operasi lift, dimana *overload* merupakan potensi bahaya yang paling tinggi dengan risiko yang mungkin terjadi adalah kegagalan pada tali atau sling baja yang tidak mampu menahan beban yg tidak sesuai dengan beban rencana, kerusakan barang yang terjadi akibat jatuhnya barang dari ketinggian, dan mungkin menimbulkan cedera atau luka pada operator atau orang yang berada disekitar area lift barang. Namun dengan adanya pengendalian risiko yang telah dianalisis oleh peneliti, risiko dan bahaya dapat dimininmalisir atau mungkin tidak terjadi

5.2 Saran

Terdapat beberapa kekurangan dalam penelitian ini yang dapat peneliti jadikan saran untuk para pembaca atau calon *engineer* yang akan meneruskan penelitian ini. Berikut merupakan beberapa saran yang dapat diberikan oleh peneliti .

- 1. Pada analisis pondasi, data yang digunakan peneliti merupakan data yang kurang akurat karena peneliti tidak mendapatkan data tanah pada lokasi perencanaan. Maka dari itu apabila penelitian ini digunakan sebagai referensi atau hal lainnya, maka perlu untuk menggunakan data tanah sesuai lokasi penelitian. Karena data tanah sangat mempengaruhi kapasitas struktur bawah atau pondasi.
- Jika penelitian ini dilanjutkan, maka hal yang perlu dilengkapi adalah analisis rencana anggaran biaya pada pekerjaan MEP, karena peneliti tidak membahas MEP pada penelitian ini. Karena Pekerjaan MEP masuk pada batasan masalah peneliti.
- Ketelitian dalam penggunaan aplikasi perhitungan beban lift sangat penting untuk memastikan hasil analisis yang akurat. Hal ini terutama berlaku saat

menyajikan data beban dalam bentuk tabel, di mana nilai yang diperoleh dari aplikasi harus sesuai kondisi nyata di lapangan agar desain dan perencanaan lift sesuai dengan kebutuhan operasional sesungguhnya. Selain itu, pengolahan data beban lift juga memerlukan perhatian khusus karena saat ini belum ada standar baku yang mengatur metode perhitungan beban lift barang secara spesifik. Oleh karena itu, perencana harus mengacu pada berbagai referensi teknis, kondisi penggunaan aktual, dan pengalaman lapangan untuk menentukan beban puncak dan kapasitas lift yang realistis. Dengan pendekatan ini, risiko kesalahan perhitungan dapat diminimalkan sehingga sistem lift yang dirancang dapat berfungsi optimal, aman, dan efisien sesuai dengan kebutuhan pengguna dan standar keselamatan yang berlaku.

LAMPIRAN WAWANCARA

3.1 Form Hasil Wawancara

3.2

No	Pertanyaan	Informan	Jawaban		
1	Apakah ada kendala pada saat proses pengangkutan barang antar lantai		Ada. Kendalanya adalah proses pengangkutan barang antar lantai menggunakan tangga sangat beresiko untuk		
	menggunakan tangga? Jika ada apa saja kendala tersebut.	SARPRAS ITK	keamanan barang yang diangkut. Karena salah satu baran yang sering diangkut menggunakan tangga antar lanta		
	Barang apa yang sering diangkut		adalah <i>smartscreen</i> (barang elektronik) Barang yang diangkut berupa dokumen dalam kontainer,		
۷	Barang apa yang sering diangkut menggunakan tangga?	SARPRAS dan Cleaning Service ITK	toga mahasiswa, smartscreen, meja, kursi, barang-barang untuk keperluan acara misalnya pada auditorium atau ruang rapat/sidang.		
3	Apakah menurut anda penggunaan tangga masih relevan terhadap proses pengangkutan barang digedung A ? Jika tidak, mengapa?	Cleaning Service ITK	Tidak. Karena menurut saya menggunakan tangga dalam proses pengangkutan barang sangatlah menguras tenaga, terlebih apabila barang yang diangkut berjumlah banyak, maka barang tersebut akan diangkut sedikit demi sedikit, hal ini membuat proses pengankutan barang lebih lama.		

4 Apakah jika *lift* barang dibangun dapat menjadi solusi untuk kendala dalam pengangkutan barang menggunakan tangga digedung A tersebut? Jika iya, mengapa?

Cleaning Service dan SARPRAS ITK Iya. Karena jika menggunakan *lift* barang lebih menjamin keamanan barang dan keselamatan pada pengangkut barang, pengguna gedung (terutama OB) dapat menghemat tenaga dan waktu karena adanya *lift* barang.

Balikpapan, 29 Nomvember 2024

Ketua Tim Kerja Kerumahtanggaan, Sarpras, dan Persuratan

Ayu Lia Pratama, S.Si.

Mahasiswa

Pianti Putriana Panjaitan

No	Pertanyaan	Informan	Jawaban
1	Apakah ada potensi bahaya yang mungkin terjadi pada operasional lift barang? Mohon untuk dijelaskan.	arifa novradika s.	Tentu saja ada. Ada beberapa potensi bahaya yang ada dilapangan ketika operasional lift barang, seperti sling rope, mesin, pintu, beban yang berlebih, dan potensi bahaya yang lainnya.
2	Boleh dijelaskan mba, dari potensi bahaya yang terjadi kira-kira risiko bahaya apa yang bisa terjadi.	arifa novradika s.	Risiko bahaya yang mungkin terjadi tidak hanya pada manusi a/ operator nya teteapi juga kerusakan barang dan sistem lainnya. Contohnya ketika loading barang, operator memasukkan barang atau muatan melebihi kapasitas dari lift barang tersebut, maka mungkin akan terjadi kegagalan teknis dari sling atau mesin tersebut, yang memungkinkan car lift akan jatuh dari ketinggian dan menyebabkan cedera pada orang sekitar atau operator lift tersebut. Selain cedera atau luka pada manusia, barang yang diangkut juga akan mengalami kerusakan karena jatuh dari ketinggian.
3	Untuk mengantisipasi hal tersebut, apa penyelesaian yang harus dilakukan?	arifa novradika s.	Untuk enghindari terjadinya hal seperti tadi, amka perencana biasanya akan memberikan sistem keamanan berupa sensor overload yang berada dibawahh car lift,

guna untuk mendeteksi beban yang masuk kekdalam car lift. Apabila terjadi overload maka sensor akan memberikan sinyal berupa alarm sebagai tanda kelebihan kapasitas atau beban.

Balikpapan, 29 Mei 2025

Site Manager, PT. Daiichi Elevator Indonesia

arifa novradika s.

Mahasiswa

Pianti Putriana Panjaitan

2.1 Bukti Doukumentasi Wawancara

Dokumentasi Keterangan

Kegiatan wawncara yang dilakukan oleh peneliti dengan informan (sarpras ITK)

Dokumentasi Keterangan

Wawancara dilakukan oleh peneliti dan informan melalui median Google Meet dan WA

LAMPIRAN II RENCANA ANGGARAN BIAYA

2.1 Volume pekerjaan

No	Keterangan	Panja ng	Lebar	Tingg i	kg	bh/ttk	set/un it	luas	Volu me	Total	satua n
I	Pekerjaan persiapan										
	Pengukuran dan pemasangan bowplank	2,23	1,69					3,768 7		3,768 7	m2
——	Pekerjaan Tanah										
1	Galian tanah pilecap	0,9	0,9	0,4		4			0,324	1,296	m3
	Urugan tanah kembali pile cap										
	Urugan pasir dibawah pile cap	0,9	0,9	0,1		4			0,081	0,324	m3
	Pekerjaan pembuangan tanah									28,49 6	m3
II	Pekerjaan pondasi bored pile										
	Pengeboran tanah diameter 0,3 meter			6,8		4				27,2	m'
	Pembuangan tanah bekas pengeboran			6,8		4		0,070 65	1,921 68	1,921 68	m3

	Pembesian			6,8				kg
	Pengecoran			6,8	4			
	PDA test						0,04	Titik
							1	Titik
III	Pekerjaan pile cap							
	Beton fc 25 mpa	0,9	0,9	0,4	4	0,324	1,296	m3
	Pembesian						4714, 789	kg
	Bekisting (2 kali pakai)	0,9	0,9	0,4	4	1,296	5,184	m3
	Lantai kerja t = 50 mm	0,9	0,9	0,05	4	0,162	0,648	m3
IV	Pekerjaan pedestal							
	Beton fc 25 mpa	0,4	0,4	0,4	4	0,064	0,256	m3
	Pembesian						156,2 133	kg
	Bekisting (2 kali pakai)	0,4	0,4	0,4	4	0,256	1,024	m3
V	Pekerjaan pelat							

	Beton fc 25 mpa	2,23	2,69	0,12			0,719 844	0,719 844	m3
	Pembesian							26,92 367	kg
	Bekisting (2 kali pakai)	2,23	2,69	0,12			2,879 376	2,879 376	m3
VI	Pekerjaan baja								
	Lantai 1								
1	Struktur								
	Kolom IWF 200X200x8x12			4,25	49,9	4	212,0 75	848,3	kg
	Balok IWF 150X100X9X11 arah X	2,29			21,1	2	48,31 9	96,63	kg
	Balok IWF 150X100X9X11 arah Y		1,69		21,1	2	35,65 9	71,31 8	kg
2	Sambungan								
	Mur Baut diameter 16 mm					32		32	Buah
	Besi siku 90x90x10	0,09			13,3	2	1,197	2,394	kg
	Angkur diameter 12 mm					4		4	Buah

	Baseplate 300x300x20 mm				1,245 938	4		4,983 75	kg
	Lantai 2								
1	Struktur								
	Kolom IWF 200X200x8x12			4,25	49,9	4	212,0 75	848,3	kg
	Balok IWF 150X100X9X11 arah X	2,29			21,1	2	48,31 9	96,63 8	kg
	Balok IWF 150X100X9X11 arah Y		1,69		21,1	2	35,65 9	71,31 8	kg
2	Sambungan								
	Mur Baut diameter 16 mm					32		32	Buah
	Besi siku 90x90x10	0,09			13,3	2	1,197	2,394	kg
	Lantai 3								
1	Struktur								
	Kolom IWF 200X200x8x12			4,25	49,9	4	212,0 75	848,3	kg
	Balok IWF 150X100X9X11 arah X	2,29			21,1	2	48,31 9	96,63 8	kg

	Balok IWF 150X100X9X11 arah Y	1,69	21,1	3	35,65 9	106,9 77	kg
2	Sambungan						
	Mur Baut diameter 16 mm			32		32	Buah
	Besi siku 90x90x10	0,09	13,3	2	1,197	2,394	kg
	Penutup atap						
	Pelat bordes 1,69 x2,23 m					72,90 64	kg
В	Sangkar/kereta						
	Frame Channel 100x50x5x7,5	20,8	9,36			194,6 88	kg
	Pelat borders (lantai)2 mm					18,68 75	kg
	Pelat besi (Dinding) 1 mm					28,34 271	kg
	Pelat besi (Atap) 1 mm					18,68 75	kg
С	Pekerjaan Arsitektur						

	Pekerjaan fasad								
	ACP (Aluminium Composite Panel)	2,29		12,75		2	29,19 75	58,39 5	m2
		1,69		12,75		2	21,54 75	43,09	m2
	dikurang							89,33 1	m2
	Luasan pintu	2,1	1,93			3	4,053	12,15 9	m2
								30,50 922	Lemb ar
	Pengecetan baja							25,14 3	m2
D	Pekerjaan MEP								
	Control Otomatis Lift Barang 3 Lantai full paket					1		1	Set
	Box oli					2		2	Buah
	Safety Brake System					2		2	Buah
	T-rail lift barang	12,75			8,6			109,6 5	kg

Sensor Overload 1 Buah

2.2 Harga Upah Pekerja, Haraga Alat, dan Harga Bahan

	Harga U	pah Pekerja	
No	Nama dan Spesifikasi	Harga(Rp)	Satuan
1	2	3	4
Ι	TENAGA		
1	Pekerja	Rp141.300,00	/Org/Hr
2	Tukang	Rp188.400,00	/Org/Hr
3	Tukang Alumunium	Rp188.400,00	/Org/Hr
4	Tukang Batu	Rp188.400,00	/Org/Hr
5	Tukang Kayu	Rp188.400,00	/Org/Hr
6	Tukang Besi	Rp188.400,00	/Org/Hr
7	Tukang Besi Konstruksi	Rp188.400,00	/Org/Hr
8	Tukang Besi Profil	Rp188.400,00	/Org/Hr
9	Tukang Cat	Rp188.400,00	/Org/Hr
10	Tukang Ereksi	Rp188.400,00	/Org/Hr
11	Tukang Las Konstruksi	Rp188.400,00	/Org/Hr
12	Tukang Las	Rp188.400,00	/Org/Hr
13	Tukang Listrik	Rp188.400,00	/Org/Hr
14	Tukang Tembok	Rp188.400,00	/Org/Hr
15	Kepala Tukang	Rp212.000,00	/Org/Hr
16	Mandor	Rp200.200,00	/Org/Hr
17	Juru Ukur	Rp240.000,00	/Org/Hr

18	Pembantu Juru Ukur	Rp188.400,00	/Org/Hr
19	Pengujian PDA pondasi	Rp4.000.000,00	
20	Pelaporan	Rp2.500.000,00	

	Harga Bal	han		Harga Bahan								
No	Nama dan Spesifikasi	Satuan	J	Harga(Rp)								
1	2	3		4								
	MATERIAL.											
I	BAHAN BATU & PASIR											
1	Air											
2	Pasir beton	kg	Rp	401,25								
3	Kerikil (maks 19 mm)	kg	Rp	400,56								
4	Kerikil (maks 30 mm)	m3	Rp	632.100,00								
5	Pasir Cor	m3	Rp	571.900,00								
6	Pasir urug	m3	Rp	303.600,00								
II	BAHAN KAYU											
1	Kaso 5/7 cm	m3	Rp	2.500.000,00								
2	Papan 3/20 cm	m3	Rp	2.100.000,00								
3	Paku campuran 2 cm dan 5 cm	kg	Rp	22.600,00								
4	Paku 5-12 cm	kg	Rp	30.300,00								
5	Minyak bekisting	liter	Rp	5.200,00								
6	Balok kayu kelas II	m3	Rp	9.013.200,00								
7	Plywood tebal 12 mm	lembar	Rp	186.000,00								
8	Dolken kayu 8-12 cm panjang 4 m	batang	Rp	27.000,00								

	Harga Bal	nan		
No	Nama dan Spesifikasi	Satuan]	Harga(Rp)
1	2	3		4
III	BAHAN SEMEN & PEREKAT			
1	Semen Pc 50kg	Zak	Rp	136.400,00
2	Semen portland	kg	Rp	1.350,00
IV	BAHAN BESI + ACP			
1	BjTP atau BjTS	kg	Rp	13.000,00
2	Kawat tali beton	kg	Rp	25.000,00
3	Angkur	bh	Rp	44.000,00
4	Baut	bh	Rp	18.360,00
5	Kawat las	Kg	Rp	63.630,00
6	Plat baja	kg	Rp	24.255,00
7	Besi beton ulir	Kg	Rp	19.300,00
8	Besi profil siku 90x90x10	Kg	Rp	19.300,00
9	Kawat Ikat	m2	Rp	12.300,00
10	ACP 2,4X1,2 meter tebal 3 mm	Lembar	Rp	280.000,00
11	Base plate 91,22x2,44x0,002)		Rp	5.000.000,00
12	Casing bored pile	m	Rp	350.600,00
13	Grendel	Buah	Rp	28.000,00
14	Besi siku	Kg	Rp	24.255,00
15	Baja Profil Hbeam 200 x 200 x 8 x 12	Kg	Rp	19.300,00
16	Baja Profil IWF150 x 100 x 6 x 9	kg	Rp	19.300,00
17	Kuas	buah	Rp	15.600,00
18	Pengencer	liter	Rp	13.400,00

Harga Bahan						
No	Nama dan Spesifikasi	Satuan]	Harga(Rp)		
1	2	3		4		
19	Ampelas	lembar	Rp	8.100,00		
20	Cat Chromate	liter	Rp46.800			
20	Cat Chromate	liter	Rp46.800			
21	Control Otomatis Lift Barang 3 Lantai full paket. PT FANTASI REKASAMBA	Set	Rp	8.000.000,00		
22	Box oli	Buah	Rp	130.500,00		
23	Safety Brake System	Buah	Rp	1.320.000,00		
24	T-rail lift barang	kg	Rp	19.300,00		
25	Sensor Overload	Set	Rp	800.000,00		

No.	Jenis Barang / Jasa	Satuan	Harga
1	Theodolite	hari	Rp325.000,00
2	Bored Pile Machine (Hidraulik) Auger ø 100 cm	/jam	Rp2.840.000,00
3	Cutter baja beton	/jam	Rp70.000,00
4	Bender baja beton	/jam	Rp72.000,00
5	Kunci Momen	/hari	Rp56.800,00
6	Stang Bor Batang Bor Diameter 1 1/4"	/hari	Rp435.000,00

7	Molen/Beton mixer 0,35 m3	/hari	Rp747.600,00
8	Bor: Auger Ø 30cm	/hari	Rp930.300,00
9	Alat las listrik	/jam	Rp110.000,00

2.3 Analisa Harga Satuan Pekerjaan (AHSP)

	Jenis pekerjaan	Pekerjaan Pengeboran 1 m' Lubang Bored Pile φ 30cm manual				
	Satuan	Lubang				
No	Uraian	Satuan	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)	
A	Tenaga Kerja				<u> </u>	
1	Pekerja	ОН	0,1	Rp141.300,00	Rp14.130,00	
2	Mandor	ОН	0,03	Rp200.200,00	Rp6.006,00	
		Jum	lah Harga Te	naga Kerja	Rp20.136,00	
В	Bahan					
	Casing bored pile		1,02	Rp 350.600,00	Rp357.612,00	
		J	lumlah Harga	Bahan	Rp357.612,00	
С	Peralatan					
	Stang Bor Batang Bor Diameter 1 1/4"		Hari	0,060	Rp435.000,00	
	Bor: Auger Ø 30cm		Hari	0,060	Rp930.300,00	
			Jumlah Harg	a Alat	Rp81.918,00	
D	Jumlah Harga Tenaga Kerja, Bahan dan Peralatan (A+B+C)				Rp459.666,00	
Е	Biaya Umum dan Keuntungan (10% - 15%) x D				Rp45.966,60	
F	Harga Satuan Pekerjaan (D+E)				Rp505.632,60	

	Jenis pekerjaan		Pengukuran ulang topografi			
Satuan			M2			
No	Uraian	Satuan	Koefisien	Harga	Jumlah Harga	
		Satuan	Rochsten	Satuan(Rp)	(Rp)	
Α	Tenaga Kerja					
1	Pekerja	ОН	0,125	Rp141.300,00	Rp17.662,50	
2	Juru Ukur	ОН	0,25	Rp240.000,00	Rp60.000,00	
3	Pembantu juru ukur	ОН	0,25	Rp188.400,00	Rp47.100,00	

	Jenis pekerjaan	Pengukuran ulang topografi			
	Satuan			M2	
No	Uraian	Satuan	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)
		Jun	ılah Harga Te	enaga Kerja	Rp124.762,50
В	Bahan				
			Jumlah Harga	a Bahan	Rp0,00
C	Peralatan				
	Theodolite	hari	11	Rp325.000,00	Rp325.000,00
			Jumlah Harg	ga Alat	Rp325.000,00
	Jumlah Harga				
	Tenaga Kerja,				
D	Bahan dan				Rp449.762,50
	Peralatan				
	(A+B+C)				
_	Biaya Umum dan				
E	Keuntungan (10%				Rp44.976,25
	- 15%) x D				
F	Harga Satuan				Rp494.738,75
	Pekerjaan (D+E)				1 ,
	Jenis pekerjaan	Pasangan 1 m' bouwplank			
	**	kg			
	Satuan			kg	
No.		Catuan	Vaafisian	kg Harga	Jumlah
No	Satuan Uraian	Satuan	Koefisien		Jumlah Harga (Rp)
No A		Satuan	Koefisien	Harga	
	Uraian Tenaga Kerja Pekerja	Satuan	Koefisien 0,012	Harga	
A 1 2	Uraian Tenaga Kerja			Harga Satuan(Rp) Rp141.300,00 Rp188.400,00	Harga (Rp)
A 1	Uraian Tenaga Kerja Pekerja	ОН	0,012	Harga Satuan(Rp) Rp141.300,00	Harga (Rp) Rp1.695,60
A 1 2	Uraian Tenaga Kerja Pekerja Tukang Kayu	ОН	0,012 0,006	Harga Satuan(Rp) Rp141.300,00 Rp188.400,00	Harga (Rp) Rp1.695,60 Rp1.130,40 Rp127,20 Rp240,24
A 1 2 3	Uraian Tenaga Kerja Pekerja Tukang Kayu Kepala Tukang	OH OH OH	0,012 0,006 0,0006	Harga Satuan(Rp) Rp141.300,00 Rp188.400,00 Rp212.000,00 Rp200.200,00	Harga (Rp) Rp1.695,60 Rp1.130,40 Rp127,20
A 1 2 3 4	Uraian Tenaga Kerja Pekerja Tukang Kayu Kepala Tukang Mandor	OH OH OH	0,012 0,006 0,0006 0,0012	Harga Satuan(Rp) Rp141.300,00 Rp188.400,00 Rp212.000,00 Rp200.200,00	Harga (Rp) Rp1.695,60 Rp1.130,40 Rp127,20 Rp240,24
A 1 2 3	Uraian Tenaga Kerja Pekerja Tukang Kayu Kepala Tukang Mandor	OH OH OH OH	0,012 0,006 0,0006 0,0012 nlah Harga To	Harga Satuan(Rp) Rp141.300,00 Rp188.400,00 Rp212.000,00 Rp200.200,00 enaga Kerja	Rp1.695,60 Rp1.130,40 Rp127,20 Rp240,24 Rp3.193,44
A 1 2 3 4	Uraian Tenaga Kerja Pekerja Tukang Kayu Kepala Tukang Mandor Bahan Kaso 5/7 cm	OH OH OH OH Jun	0,012 0,006 0,0006 0,0012 nlah Harga To	Harga Satuan(Rp) Rp141.300,00 Rp188.400,00 Rp212.000,00 Rp200.200,00 enaga Kerja Rp2.500.000,00	Harga (Rp) Rp1.695,60 Rp1.130,40 Rp127,20 Rp240,24 Rp3.193,44 Rp32.500,00
A 1 2 3 4	Uraian Tenaga Kerja Pekerja Tukang Kayu Kepala Tukang Mandor Bahan Kaso 5/7 cm Papan 3/20 cm	OH OH OH Jun m3 m3	0,012 0,006 0,0006 0,0012 nlah Harga To 0,013 0,007	Harga Satuan(Rp) Rp141.300,00 Rp188.400,00 Rp212.000,00 Rp200.200,00 enaga Kerja Rp2.500.000,00 Rp2.100.000,00	Harga (Rp) Rp1.695,60 Rp1.130,40 Rp127,20 Rp240,24 Rp3.193,44 Rp32.500,00 Rp14.700,00
A 1 2 3 4	Uraian Tenaga Kerja Pekerja Tukang Kayu Kepala Tukang Mandor Bahan Kaso 5/7 cm	OH OH OH OH Jun	0,012 0,006 0,0006 0,0012 nlah Harga To	Harga Satuan(Rp) Rp141.300,00 Rp188.400,00 Rp212.000,00 Rp200.200,00 enaga Kerja Rp2.500.000,00	Harga (Rp) Rp1.695,60 Rp1.130,40 Rp127,20 Rp240,24 Rp3.193,44 Rp32.500,00
A 1 2 3 4	Uraian Tenaga Kerja Pekerja Tukang Kayu Kepala Tukang Mandor Bahan Kaso 5/7 cm Papan 3/20 cm Paku campuran 2	OH OH OH Jun m3 m3	0,012 0,006 0,0006 0,0012 nlah Harga To 0,013 0,007	Harga Satuan(Rp) Rp141.300,00 Rp188.400,00 Rp212.000,00 Rp200.200,00 enaga Kerja Rp2.500.000,00 Rp2.100.000,00 Rp22.600,00	Harga (Rp) Rp1.695,60 Rp1.130,40 Rp127,20 Rp240,24 Rp3.193,44 Rp32.500,00 Rp14.700,00
A 1 2 3 4	Uraian Tenaga Kerja Pekerja Tukang Kayu Kepala Tukang Mandor Bahan Kaso 5/7 cm Papan 3/20 cm Paku campuran 2	OH OH OH Jun m3 m3	0,012 0,006 0,0006 0,0012 nlah Harga To 0,013 0,007 0,02 Jumlah Harg	Harga Satuan(Rp) Rp141.300,00 Rp188.400,00 Rp212.000,00 Rp200.200,00 enaga Kerja Rp2.500.000,00 Rp2.100.000,00 Rp22.600,00	Rp1.695,60 Rp1.130,40 Rp127,20 Rp240,24 Rp3.193,44 Rp32.500,00 Rp14.700,00 Rp452,00 Rp47.652,00
A 1 2 3 4 B	Uraian Tenaga Kerja Pekerja Tukang Kayu Kepala Tukang Mandor Bahan Kaso 5/7 cm Papan 3/20 cm Paku campuran 2 cm dan 5 cm Peralatan	OH OH OH Jun m3 m3	0,012 0,006 0,0006 0,0012 nlah Harga To 0,013 0,007 0,02	Harga Satuan(Rp) Rp141.300,00 Rp188.400,00 Rp212.000,00 Rp200.200,00 enaga Kerja Rp2.500.000,00 Rp2.100.000,00 Rp22.600,00	Rp1.695,60 Rp1.130,40 Rp127,20 Rp240,24 Rp3.193,44 Rp32.500,00 Rp14.700,00 Rp452,00
A 1 2 3 4 B C	Uraian Tenaga Kerja Pekerja Tukang Kayu Kepala Tukang Mandor Bahan Kaso 5/7 cm Papan 3/20 cm Paku campuran 2 cm dan 5 cm Peralatan Jumlah Harga	OH OH OH Jun m3 m3	0,012 0,006 0,0006 0,0012 nlah Harga To 0,013 0,007 0,02 Jumlah Harg	Harga Satuan(Rp) Rp141.300,00 Rp188.400,00 Rp212.000,00 Rp200.200,00 enaga Kerja Rp2.500.000,00 Rp2.100.000,00 Rp22.600,00	Rp1.695,60 Rp1.130,40 Rp127,20 Rp240,24 Rp3.193,44 Rp32.500,00 Rp14.700,00 Rp452,00 Rp47.652,00
A 1 2 3 4 B	Uraian Tenaga Kerja Pekerja Tukang Kayu Kepala Tukang Mandor Bahan Kaso 5/7 cm Papan 3/20 cm Paku campuran 2 cm dan 5 cm Peralatan	OH OH OH Jun m3 m3	0,012 0,006 0,0006 0,0012 nlah Harga To 0,013 0,007 0,02 Jumlah Harg	Harga Satuan(Rp) Rp141.300,00 Rp188.400,00 Rp212.000,00 Rp200.200,00 enaga Kerja Rp2.500.000,00 Rp2.100.000,00 Rp22.600,00	Rp1.695,60 Rp1.130,40 Rp127,20 Rp240,24 Rp3.193,44 Rp32.500,00 Rp14.700,00 Rp452,00 Rp47.652,00

Jenis pekerjaan		Pasangan 1 m' bouwplank			
	Satuan			kg	
No	Uraian	Satuan	Koefisien	Harga	Jumlah
	Orthan	Sutuun	Rochisten	Satuan(Rp)	Harga (Rp)
	Peralatan				
	(A+B+C)				
	Biaya Umum dan				
E	Keuntungan				Rp5.084,54
	(10% - 15%) x D				
F	Harga Satuan			_	D=55 020 09
Г	Pekerjaan (D+E)				Rp55.929,98

	Jenis pekerjaan	Pek. Pen	ggalian 1 m3	Tanah Biasa Sec	dalam 0 s.d. 1m
	Satuan	m3			
No	I Imaian	Satuan Koefisien Harga		Jumlah Harga	
NO	Uraian	Satuan	Koensien	Satuan(Rp)	(Rp)
A	Tenaga Kerja			` * '	•
1	Pekerja	OH	0,75	Rp141.300,00	Rp105.975,00
2	Mandor	OH	0,038	Rp200.200,00	Rp7.607,60
		Jum	lah Harga Te	naga Kerja	Rp113.582,60
В	Bahan				
		J	Rp0,00		
С	Peralatan				
			Jumlah Harg	a Alat	Rp0,00
	Jumlah Harga				_
	Tenaga Kerja,				
D	Bahan dan				Rp113.582,60
	Peralatan				_
	(A+B+C)				
	Biaya Umum dan				
E	Keuntungan (10%				Rp11.358,26
	- 15%) x D				-
F	Harga Satuan				D=124 040 96
- Г	Pekerjaan (D+E)				Rp124.940,86

	Jenis pekerjaan	I	Pembuangan tanah sejauh 30 m1m			
	Satuan		m3			
No	Uraian	Satuan	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)	
A	Tenaga Kerja			(1)	8 (1)	
1	Pekerja	ОН	0,33	Rp141.300,00	Rp46.629,00	
2	Mandor	ОН	0,01	Rp200.200,00	Rp2.002,00	

	Jenis pekerjaan	Pembuangan tanah sejauh 30 m1m			
	Satuan			m3	
No	Uraian	Satuan	Koefisien	Harga	Jumlah
	Oranan	Datuan	Rochsten	Satuan(Rp)	Harga (Rp)
		Jum	lah Harga Te	naga Kerja	Rp48.631,00
В	Bahan				
		J	umlah Harga	Bahan	Rp0,00
С	Peralatan				
			Jumlah Harg	a Alat	Rp0,00
	Jumlah Harga				-
	Tenaga Kerja,				
D	Bahan dan				Rp48.631,00
	Peralatan				
	(A+B+C)				
г	Biaya Umum dan				D 4062 10
Е	Keuntungan (10%				Rp4.863,10
	- 15%) x D				
F	Harga Satuan Pekerjaan (D+E)				Rp53.494,10
	rekerjaan (D+E)				
	T . 1 .	Penulang	an kolom, ba	lok, dan sloof un	tuk BiTP atau
	Jenis pekerjaan	6		ameter > 12 mm	J
	Satuan		<u> </u>	kg	
No	Uraian	Cotuon	Koefisien	Harga	Jumlah
110	Uraiaii	Satuan	Koensien	Satuan(Rp)	Harga (Rp)
_A	Tenaga Kerja				
1	Pekerja	OH	0,0016	Rp141.300,00	Rp226,08
2	Tukang besi	OH	0,0016	Rp188.400,00	Rp301,44
3	Kepala Tukang	OH	0,00016	Rp212.000,00	Rp33,92
4	Mandor	ОН	0,00016	Rp200.200,00	Rp32,03
		Jum	lah Harga Te	naga Kerja	Rp593,47
В	Bahan				
	BjTP atau BjTS	kg	1,02	Rp13.000,00	Rp13.260,00
	Kawat tali beton	kg	0,028	Rp25.000,00	Rp700,00
		J	umlah Harga	Bahan	Rp13.960,00
С	Peralatan				
	Cutter baja beton	hari	0,04	Rp70.000,00	Rp2.800,00
	Bender baja beton	hari	0,04	Rp72.000,00	Rp2.880,00
			Jumlah Harg	a Alat	Rp5.680,00
	Jumlah Harga				Rp20.233,47
	Tenaga Kerja,				1, ,

	Jenis pekerjaan Penulangan kolom, balok, dan sloof untuk BjTP at BjTS diameter > 12 mm				
	Satuan			kg	
No	Uraian	Satuan	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)
	Bahan dan Peralatan (A+B+C)				
E	Biaya Umum dan Keuntungan (10% - 15%) x D				Rp2.023,35
F	Harga Satuan Pekerjaan (D+E)				Rp22.256,82
	Jenis pekerjaan	Penulang	·	lok, dan sloof un ameter < 12 mm	tuk BjTP atau
No	Satuan Uraian	Saturan	Koefisien	kg Harga	Jumlah
		Satuan	Koensien	Satuan(Rp)	Harga (Rp)
<u>A</u>	Tenaga Kerja				
1	Pekerja	OH	0,0016	Rp141.300,00	Rp226,08
2	Tukang besi	OH	0,0016	Rp188.400,00	Rp301,44
3	Kepala Tukang	OH	0,00016	Rp212.000,00	Rp33,92
4	Mandor	OH	0,00016	Rp200.200,00	Rp32,03
		Juml	lah Harga Te	naga Kerja	Rp593,47
В	Bahan				
	BjTP atau BjTS	kg	1,02	Rp13.000,00	Rp13.260,00
	Kawat tali beton	kg	0,028	Rp25.000,00	Rp700,00
		J	umlah Harga	Bahan	Rp13.960,00
\overline{C}	Peralatan				
			Jumlah Harg	a Alat	Rp0,00
D	Jumlah Harga Tenaga Kerja, Bahan dan Peralatan (A+B+C)				Rp14.553,47
E	Biaya Umum dan Keuntungan (10% - 15%) x D				Rp1.455,35
F	Harga Satuan Pekerjaan (D+E)				Rp16.008,82

	Jenis pekerjaan Pemasangan 1m2 bekisting untuk kolon			n (3 kali pakai)	
	Satuan			m2	
No	Uraian	Satuan	Koefisien	Harga	Jumlah Harga
		Satuan	Kochsich	Satuan(Rp)	(Rp)
_A	Tenaga Kerja				
1	Pekerja	ОН	0,66	Rp141.300,00	Rp93.258,00
2	Tukang besi	ОН	0,33	Rp188.400,00	Rp62.172,00
3	Kepala Tukang	OH	0,033	Rp212.000,00	Rp6.996,00
4	Mandor	ОН	0,011	Rp200.200,00	Rp2.202,20
		Jun	nlah Harga T	enaga Kerja	Rp164.628,20
В	Bahan				
	Paku 5-12 cm	kg	0,4	Rp30.300,00	Rp12.120,00
	Minyak bekisting	liter	0,2	Rp5.200,00	Rp1.040,00
	Balok kayu kelas II	m3	0,00465	Rp9.013.200,00	Rp41.911,38
	Plywood tebal 12 mm	lembar	0,12705	Rp186.000,00	Rp23.631,30
	Dolken kayu 8- 12 cm panjang 4 m	batang	0,65	Rp27.000,00	Rp17.550,00
			Jumlah Harg	a Bahan	Rp96.252,68
С	Peralatan				
			Jumlah Har	ga Alat	Rp0,00
D	Jumlah Harga Tenaga Kerja, Bahan dan Peralatan (A+B+C)				Rp260.880,88
Е	Biaya Umum dan Keuntungan (10% - 15%) x D				Rp26.088,09
F	Harga Satuan Pekerjaan (D+E)				Rp286.968,97
		-		11	1
	Jenis pekerjaan	Pemasa	angan 1m2 b	ekisting untuk plat pakai)	lantai (3 kali
	Satuan			m2	
No	Uraian	Satuan	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)
A	Tenaga Kerja				
1	Pekerja	OH	0,66	Rp141.300,00	Rp93.258,00
2	Tukang besi	OH	0,33	Rp188.400,00	Rp62.172,00

Jenis pekerjaan Pemasangan 1				ekisting untuk plat pakai)	lantai (3 kali		
	Satuan		m2				
No	Uraian	Satuan	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)		
3	Kepala Tukang	ОН	0,033	Rp212.000,00	Rp6.996,00		
4	Mandor	ОН	0,011	Rp200.200,00	Rp2.202,20		
		Jum	ılah Harga T	enaga Kerja	Rp164.628,20		
В	Bahan						
	Paku 5-12 cm	kg	0,4	Rp30.300,00	Rp12.120,00		
	Minyak bekisting	liter	0,2	Rp5.200,00	Rp1.040,00		
	Balok kayu kelas II	m3	0,00465	Rp9.013.200,00	Rp41.911,38		
	Plywood tebal 12 mm	lembar	0,127	Rp186.000,00	Rp23.622,00		
	Dolken kayu 8- 12 cm panjang 4 m	batang	1,95	Rp27.000,00	Rp52.650,00		
			a Bahan	Rp131.343,38			
С	Peralatan						
			Jumlah Har	ga Alat	Rp0,00		
D	Jumlah Harga Tenaga Kerja, Bahan dan Peralatan (A+B+C)				Rp295.971,58		
Е	Biaya Umum dan Keuntungan (10% - 15%) x D				Rp29.597,16		
F	Harga Satuan Pekerjaan (D+E)				Rp325.568,74		
	Jenis pekerjaan		Bongkar 1	m2 bekisting hati	- hati		
	Satuan			m2			
No	Uraian	Satuar	n Koefisie	en Harga Satuan(Rp)	Jumlah Harga (Rp)		
A	Tenaga Kerja						
1	Pekerja	OH	0,06	Rp141.300,00			
4	Mandor	OH	0,006	Rp200.200,00			
		Ju	mlah Harga	Tenaga Kerja	Rp9.679,20		
В	Bahan						

	Jenis pekerjaan	Bongkar 1 m2 bekisting hati - hati			
	Satuan	m2			
No	Uraian	Satuan	Koefisien	Harga	Jumlah
		Sutuun		Satuan(Rp)	Harga (Rp)
			Jumlah Harga	Bahan	Rp0,00
С	Peralatan				
			Jumlah Harga	ı Alat	Rp0,00
	Jumlah Harga				
	Tenaga Kerja,				
D	Bahan dan				Rp9.679,20
	Peralatan				
	(A+B+C)				
	Biaya Umum dan				
E	Keuntungan (10%				Rp967,92
	- 15%) x D				
F	Harga Satuan				D _m 10 647 12
1,	Pekerjaan (D+E)				Rp10.647,12

Je	nis pekerjaan	semi mekanis			
	Satuan				
N o	Uraian	Satua n	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)
A	Tenaga Kerja				
1	Pekerja	ОН	1	Rp141.300,0 0	Rp141.300,00
2	Tukang batu	ОН	0,25	Rp188.400,0 0	Rp47.100,00
3	Kepala Tukang	ОН	0,025	Rp212.000,0 0	Rp5.300,00
4	Mandor	ОН	0,1	Rp200.200,0 0	Rp20.020,00
		Ju	mlah Harga Ten	aga Kerja	Rp213.720,00
В	Bahan				
	Semen portland	kg	407	Rp1.350,00	Rp549.450,00
	Pasir beton	kg	731	Rp401,25	Rp293.313,75
	Kerikil (maks 19 mm)	kg	1009	Rp400,56	Rp404.165,04
	Air	Ltr	202	Rp0,00	Rp0,00
			Jumlah Harga	Rp1.246.928,7	
					

Jenis pekerjaan		Pengecoran campuran beton F'c 25 Mpa semi mekanis				
	Satuan					
N o	Uraian	Satua n	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)	
	Peralatan				_	
	Molen/Beto n mixer 0,35 m3	hari	0,1475	Rp747.600,0	Rp110.271,00	
			Jumlah Harga	Alat	Rp110.271,00	
D	Jumlah Harga Tenaga Kerja, Bahan dan Peralatan (A+B+C)		Rp1.570.919,7 9		Rp1.570.919,7 9	
Е	Biaya Umum dan Keuntungan (10% - 15%) x D		Rp157.091,98		Rp157.091,98	
F	Harga Satuan Pekerjaan (D+E)		Rp1.728.011,7		Rp1.728.011,7	

J	lenis pekerjaan	Pengeco	Pengecoran campuran beton F'c 22 Mpa semi mekanis				
	Satuan		m3				
No	Uraian	Satuan	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)		
A	Tenaga Kerja						
1	Pekerja	ОН	1	Rp141.300,00	Rp141.300,00		
2	Tukang batu	ОН	0,25	Rp188.400,00	Rp47.100,00		
3	Kepala Tukang	ОН	0,02	Rp212.000,00	Rp4.240,00		
4	Mandor	ОН	0,1	Rp200.200,00	Rp20.020,00		
		Jum	lah Harga Te	enaga Kerja	Rp212.660,00		
В	Bahan						
	Semen portland	kg	368	Rp1.350,00	Rp496.800,00		
	Pasir beton	kg	770	Rp401,25	Rp308.962,50		
	Kerikil (maks 19 mm)	kg	1009	Rp400,56	Rp404.165,04		
	Air	Ltr	202	Rp0,00	Rp0,00		
		a Bahan	Rp1.209.927,54				

	Jenis pekerjaan	Pengeco	oran campura	n beton F'c 22 M	Ipa semi mekanis		
	Satuan	m3					
No	Uraian	Satuan	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)		
С	Peralatan						
	Molen/Beton mixer 0,35 m3	hari	0,1475	Rp747.600,00	Rp110.271,00		
			Jumlah Harg	ga Alat	Rp110.271,00		
D	Jumlah Harga Tenaga Kerja, Bahan dan Peralatan (A+B+C)				Rp1.532.858,54		
Е	Biaya Umum dan Keuntungan (10% - 15%) x D				Rp153.285,85		
F	Harga Satuan Pekerjaan (D+E)				Rp1.686.144,39		

Jenis pekerjaan Membuat lantai kerja mutu fc 7,4 Mpa (K-100)						
	Satuan	m3				
No	Uraian	Satuan	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)	
A	Tenaga Kerja					
1	Pekerja	ОН	1,2	Rp141.300,00	Rp169.560,00	
2	Tukang batu	OH	0,2	Rp188.400,00	Rp37.680,00	
3	Kepala Tukang	OH	0,02	Rp212.000,00	Rp4.240,00	
4	Mandor	ОН	0,06	Rp200.200,00	Rp12.012,00	
		Jum	lah Harga Te	Rp223.492,00		
В	Bahan					
	Semen portland	kg	230	Rp1.350,00	Rp310.500,00	
	Pasir beton	kg	0,638	Rp401,25	Rp256,00	
	Kerikil (maks 19 mm)	kg	0,761	Rp632.100,00	Rp481.028,10	
	Air	Ltr	200	Rp0,00	Rp0,00	
		J	umlah Harga	a Bahan	Rp791.784,10	
С	Peralatan					
		-	Jumlah Harg	ga A <mark>lat</mark>	Rp0,00	
D	Jumlah Harga Tenaga Kerja, Bahan dan				Rp1.015.276,10	

	Jenis pekerjaan	Membuat lantai kerja mutu fc 7,4 Mpa (K-100)			
	Satuan			m3	
No	Uraian	Satuan	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)
	Peralatan				
	(A+B+C)				
Е	Biaya Umum dan Keuntungan (10% - 15%) x D				Rp101.527,61
F	Harga Satuan Pekerjaan (D+E)				Rp1.116.803,71

	enis pekerjaan			Test PDA	
Satuan				Titik	
No	Uraian	Satuan	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)
Α	Tenaga Kerja				
1	Pengujian PDA pondasi	LS	1	Rp4.000.000,00	Rp4.000.000,00
2	Pelaporan	LS	1	Rp2.500.000,00	Rp2.500.000,00
3	Transportasi dan akomodasi	LS	1	Rp1.000.000,00	Rp1.000.000,00
		Jun	nlah Harga T	Rp7.500.000,00	
В	Bahan				
			Jumlah Harg	ga Bahan	Rp0,00
C	Peralatan				
			Jumlah Hai	ga Alat	Rp0,00
D	Jumlah Harga Tenaga Kerja, Bahan dan Peralatan (A+B+C)				Rp7.500.000,00
Е	Biaya Umum dan Keuntungan (10% - 15%) x D				Rp750.000,00
F	Harga Satuan Pekerjaan (D+E)				Rp8.250.000,00

Jenis pekerjaan Profil Hbeam 200 x				n 200 x 200 x 8 x	x 12
	Satuan			kg	
No	Uraian	Satuan	Koefisien	Harga	Jumlah
		Satuan	Rochsten	Satuan(Rp)	Harga (Rp)
<u>A</u>	Tenaga Kerja				
1	Pekerja	OH	0,06	Rp141.300,00	Rp8.478,00
2	Tukang Las	OH	0,06	Rp188.400,00	Rp11.304,00
3	Kepala Tukang	OH	0,006	Rp212.000,00	Rp1.272,00
4	Mandor	OH	0,003	Rp200.200,00	Rp600,60
		Jum	lah Harga Te	naga Kerja	Rp21.654,60
В	Bahan				_
	Baja Profil Hbeam 200 x 200 x 8 x 12	kg	1,15	Rp19.300	Rp22.195,00
		J	umlah Harga	Bahan	Rp22.195,00
С	Peralatan		8		
			Jumlah Harg	a Alat	Rp0,00
	Jumlah Harga				
	Tenaga Kerja,				
D	Bahan dan				Rp43.849,60
	Peralatan				
	(A+B+C)				
	Biaya Umum dan				
E	Keuntungan (10%				Rp4.384,96
	- 15%) x D				
F	Harga Satuan				Rp48.234,56
	Pekerjaan (D+E)				
	Jenis pekerjaan		Profil IWF	F 150 x 100 x 6 x	9
	Satuan			kg	
No	Uraian	Satuan	Koefisien	Harga	Jumlah
	Oralali	Satuan	Koensien	Satuan(Rp)	Harga (Rp)
A	Tenaga Kerja				
1	Pekerja	OH	0,06	Rp141.300,00	Rp8.478,00
2	Tukang Las	OH	0,06	Rp188.400,00	Rp11.304,00
3	Kepala Tukang	OH	0,006	Rp212.000,00	Rp1.272,00
4	Mandor	OH	0,003	Rp200.200,00	Rp600,60
		Jum	lah Harga Te	naga Kerja	Rp21.654,60
В	Bahan				
	Baja Profil Hbeam	lza	1,15	Pp10 200	Pn22 105 00
	200 x 200 x 8 x 12	kg	1,13	Rp19.300	Rp22.195,00
		J	umlah Harga	Bahan	Rp22.195,00
C	Peralatan				
			Jumlah Harg	a Alat	Rp0,00

	Jenis pekerjaan		Profil IWF	150 x 100 x 6	x 9
	Satuan			kg	
No	Uraian	Satuan	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)
D	Jumlah Harga Tenaga Kerja, Bahan dan Peralatan (A+B+C)				Rp43.849,60
Е	Biaya Umum dan Keuntungan (10% - 15%) x D				Rp4.384,96
F	Harga Satuan Pekerjaan (D+E)				Rp48.234,56
	Jenis pekerjaan		Profil I	2 90 x 90 x 10	
	Satuan			kg	
				Harga	Iumlah

Jenis pekerjaan		Profil L 90 x 90 x 10			
Satuan		kg			
No	Uraian	Satuan	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)
A	Tenaga Kerja				
1	Pekerja	ОН	0,06	Rp141.300,00	Rp8.478,00
2	Tukang Las	ОН	0,06	Rp188.400,00	Rp11.304,00
3	Kepala Tukang	ОН	0,006	Rp212.000,00	Rp1.272,00
4	Mandor	OH	0,003	Rp200.200,00	Rp600,60
		Jumlah Harga Tenaga Kerja			Rp21.654,60
В	Bahan				
	Baja Profil Hbeam 200 x 200 x 8 x 12	kg	1,15	Rp19.300	Rp22.195,00
		Jumlah Harga Bahan		Rp22.195,00	
C	Peralatan				
			Jumlah Harg	a Alat	Rp0,00
D	Jumlah Harga Tenaga Kerja, Bahan dan Peralatan (A+B+C)				Rp43.849,60
Е	Biaya Umum dan Keuntungan (10% - 15%) x D				Rp4.384,96
F	Harga Satuan Pekerjaan (D+E)				Rp48.234,56

	Jenis pekerjaan Pengecatan permukaan baja				
	Satuan	m2			
No	Uraian	Satuan	Koefisien	Harga	Jumlah
		Dataan	Rochsten	Satuan(Rp)	Harga (Rp)
<u>A</u>	Tenaga Kerja				
1	Pekerja	OH	0,02	Rp141.300,00	Rp2.826,00
2	Tukang Las	OH	0,2	Rp188.400,00	Rp37.680,00
3	Kepala Tukang	OH	0,02	Rp212.000,00	Rp4.240,00
4	Mandor	ОН	0,0067	Rp200.200,00	Rp1.341,34
		Jum	lah Harga Te	naga Kerja	Rp46.087,34
В	Bahan				
	Cat Chromate	kg	0,1	Rp46.800	Rp4.680,00
	Kuas	buah	0,01	Rp15.600	Rp156,00
	Pengencer	liter	0,01	Rp13.400	Rp134,00
	Ampelas	lembar	0,02	Rp8.100	Rp162,00
	Cat Chromate	J	umlah Harga	Bahan	Rp5.132,00
С	Peralatan		T 11 TT	A 1 .	D 0.00
	Truntale III anno		Jumlah Harg	a Alat	Rp0,00
	Jumlah Harga Tenaga Kerja,				
D	Bahan dan				Rp51.219,34
D	Peralatan				кр31.217,54
	(A+B+C)				
	Biaya Umum dan				_
E	Keuntungan (10%				Rp5.121,93
	- 15%) x D				-
F	Harga Satuan				Rp56.341,27
	Pekerjaan (D+E)				крэб.э+1,27
	Jenis pekerjaan		Pemasa	angan 1 kg baut	
	Satuan			kg	
N T -	T Lug !	C = 4===	V a a finite	Harga	Jumlah
No	Uraian	Satuan	Koefisien	Satuan(Rp)	Harga (Rp)
A	Tenaga Kerja				
1	Pekerja	ОН	0,0404	Rp141.300,00	5708,52
2	Tukang Las	ОН	0,0406	Rp188.400,00	7649,04
3	Kepala Tukang	ОН	0,0041	Rp212.000,00	869,2
4	Mandor	OH	0,0014	Rp200.200,00	280,28
		Jumlah Harga Tenaga Kerja R			Rp46.087,34
В	Bahan				
	Angkur	Kg	1	Rp44.000,00	44000
		J	umlah Harga	Bahan	Rp5.132,00

	Jenis pekerjaan		Pemasangan 1 kg baut				
	Satuan		kg				
No	Uraian	Satuan	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)		
С	Peralatan						
	Kunci momen	hari	0,0357	Rp56.800,00	Rp2.027,76		
			Jumlah Harga	a Alat	Rp2.027,76		
D	Jumlah Harga Tenaga Kerja, Bahan dan Peralatan (A+B+C)		60534,8		Rp51.219,34		
Е	Biaya Umum dan Keuntungan (10% - 15%) x D		6053,48		Rp5.121,93		
F	Harga Satuan Pekerjaan (D+E)		66588,28		Rp56.341,27		

Jenis pekerjaan		Pemasangan Plat baja secara semi mekanis				
Satuan						
No	Uraian	Satuan	Koefisien	kg Harga Satuan(Rp)	Jumlah Harga (Rp)	
A	Tenaga Kerja			(-1)	8 (17)	
1	Pekerja	ОН	0,0345	Rp141.300,00	Rp4.874,85	
2	Tukang Las	ОН	0,0345	Rp188.400,00	Rp6.499,80	
3	Kepala Tukang	ОН	0,034	Rp212.000,00	Rp7.208,00	
4	Mandor	ОН	0,0011	Rp200.200,00	Rp220,22	
		Jum	ılah Harga Ter	naga Kerja	Rp18.802,87	
В	Bahan				_	
	Plat baja	kg	1,15	Rp24.255,00	Rp27.893,25	
	Kawat las	kg	0,053	Rp63.630,00	Rp3.372,39	
		•	Jumlah Harga	Bahan	Rp31.265,64	
С	Peralatan					
	Alat las listrik	Jam	0,0333	Rp110.000,00	Rp3.663,00	
			Jumlah Harga	a Alat	Rp3.663,00	
D	Jumlah Harga Tenaga Kerja, Bahan dan Peralatan (A+B+C)		Rp53.731,51		Rp53.731,51	
Е	Biaya Umum dan Keuntungan (10% - 15%) x D		Rp5.373,15		Rp5.373,15	

Jenis pekerjaan		Pemasangan Plat baja secara semi mekanis			
Satuan		kg			
No	Uraian	Satuan	Koefisien	Harga Satuan(Rp)	Jumlah Harga (Rp)
F	Harga Satuan Pekerjaan (D+E)		Rp59.104,66		Rp59.104,66

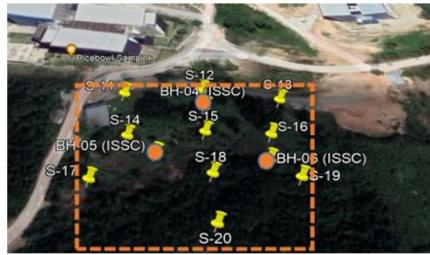
2.4 Harga Satuan Pekerjaan (HSP)

No	Nama dan Spesifikasi	Satuan	Harga(Rp)
1	2	3	4
1	Pekerjaan Pengeboran 1 m' Lubang Bored Pile φ 30 cm	m'	Rp505.632,60
2	Pengukuran Uitzet dengan Theodolite	m2	Rp494.738,75
3	Pasangan 1 m' bouwplank	m'	Rp55.929,98
4	Penggalian 1 m3 Tanah Biasa Sedalam 0 s.d. 1m	m3	Rp124.940,86
5	Membuat lantai kerja mutu fc 7,4 Mpa (K-100)	m3	Rp1.116.803,7
6	Penulangan untuk BjTs	kg	Rp22.256,82
7	Pemasangan Bekisting kolom (3 kali pakai)	m2	Rp286.968,97
8	Pemasangan Bekisting plat (2 kali pakai)	m2	Rp325.568,74
9	Bongkar Bekisting	m2	Rp10.647,12
10	Pengecoran campuran beton F'c 25 Mpa semi mekanis	m3	Rp1.728.011,7
11	Pengecoran campuran beton F'c 22 Mpa semi mekanis	m3	Rp1.686.144,3
12	Pekerjaan pembuangan tanah	m3	Rp53.494,10
13	Test PDA	titik	Rp8.250.000,0 0
14	Profil Hbeam 200 x 200 x 8 x 12	kg	Rp48.234,56
15	Baja Profil IWF150 x 100 x 6 x 9	kg	Rp48.234,56
16	Profil Profil L 90 x 90 x 10	kg	Rp48.234,56
_17	Frame Channel 100x50x5x7,5	kg	Rp48.234,56
18	Pemasangan baut	kg	Rp36.477,64
19	Plat baja secara semi mekanis	kg	Rp59.104,66
20	ACP	m2	Rp845.000,00
21	Pemasangan angkur	kg	Rp66.588,28
22	Pengecatan permukaan baja	m2	Rp188.400,00

2.5 Rekapitulasi Rencana Anggaran Biaya (RAB)

No	URAIAN PEKERJAAN	Volume	Satuan	Harga Satuan	Jumlah Harga
				Rp	Rp
I	Pekerjaan Persiapan			•	•
1	Pengukuran Uitzet dengan Theodolit	3,77	m2	494.738,75	1.864.521,93
2	Pengukuran dan pemasangan bowplank	3,77	m'	55.929,98	210.783,33
				Jumlah	2.075.305,26
II	Pekerjaan Tanah				
1	Penggalian tanah pilecap	1,30	m3	124.940,86	161.923,35
2	Pembuangan tanah hasil galian	28,50	m3	53.494,10	1.524.367,87
				Jumlah	1.686.291,23
Ш	Pekerjaan Pondasi Bore Pile dia. 0,3 m				
1	Pekerjaan Pengeboran	27,20	m'	505.632,60	13.753.206,72
3	Pekerjaan pembesian		kg		-
4	Pekerjaan beton fc 25 Mpa		m3		-
5	PDA Test		ttk		-
				Jumlah	13.753.206,72
IV	Pekerjaan Beton				
	Lantai dasar				
1	Pile cap 900x900x400				
	Pekerjaan beton fc' 25 mpa	1,30	m3	1.728.011,77	2.239.503,25
	Pembesian	4.714,79	kg	22.256,82	104.936.200,77
	Pasang bekisting (2 kali pakai)	5,18	m2	325.568,74	1.687.748,34
	Lantai kerja t = 50 mm	0,65	m3	1.116.803,71	723.688,80

2	Pedestal 400x400x400				
	Pekerjaan beton fc' 25 mpa	0,26	m3	1.728.011,77	442.371,01
	Pembesian	156,21	kg	22.256,82	3.476.811,92
	Pasang bekisting (2 kali pakai)	1,02	m2	286.968,97	293.856,22
3	Pelat Lantai t = 120				
	Pekerjaan beton fc' 25 mpa	0,72	m3	1.728.011,77	1.243.898,90
	Pembesian	26,92	kg	22.256,82	599.235,18
	Pasang bekisting untuk pelat (2 kali pakai)	2,88	m2	325.568,74	937.434,81
				Jumlah	116.580.749,22
\mathbf{V}	Pekerjaan Baja				
	Lantai dasar				
1	Kolom Hbeam 200 x 200 x 8 x 12	848,30	kg	48.234,56	40.917.377,25
2	Balok IWF 150 x 100 x 6 x 9	167,96	kg	48.234,56	8.101.283,76
	Lantai 2				
1	Kolom Hbeam 200 x 200 x 8 x 12	848,30	kg	48.234,56	40.917.377,25
2	Balok IWF 150 x 100 x 6 x 9	167,96	kg	48.234,56	8.101.283,76
	Lantai 3				
1	Kolom Hbeam 200 x 200 x 8 x 12	848,30	kg	48.234,56	40.917.377,25
2	Balok IWF 150 x 100 x 6 x 9	167,96	kg	48.234,56	8.101.283,76
3	Atap pelat borders 2 mm	72,91	kg	59.104,66	4.309.107,99
	Sambungan				
1	Mur Baut diameter 16 mm	96,00	buah	36.477,64	3.501.853,34


2	Angkur diameter 12 mm	4,00	buah	66.588,28	266.353,12
3	Base Plate 300 x 300 tb 17 mm	4,98	kg	59.104,66	294.562,85
4	Besi siku 90x90x10	7,18	kg	48.234,56	346.420,61
	Sangkar				
1	Frame Channel 100x50x5x7,5	194,69	kg	48.234,56	9.390.690,02
2	Pelat borders (lantai)2 mm	18,69	kg	59.104,66	1.104.518,35
3	Pelat besi (Dinding) 1 mm	28,34	kg	59.104,66	1.675.186,17
4	Pelat besi (Atap) 1 mm	18,69	kg	59.104,66	1.104.518,35
					169.049.193,83
VI	Pekerjaan Arsitektur				
1	ACP (Aluminium Composite Panel)	89,33	m2	845.000,00	75.484.695,00
2	Cat Chromate Baja	25,14	m2	56.341,27	1.416.588,65
					76.901.283,65
VI I	Pekerjaan MEP				
1	Control Otomatis Lift Barang 3 Lantai full paket	1	Set	8.000.000,00	8.000.000,00
2	Box oli	2	Buah	130.500,00	261.000,00
3	Safety Brake System	2	Buah	1.320.000,00	2.640.000,00
4	T-rail lift barang	109,65	kg	19.300,00	2.116.245,00
5	Sensor Overload	1	Buah	800.000,00	800.000,00
					13.817.245,00

LAMPIRAN III DATA TANAH

5.1 Lokasi pengambilan sampel tanah

Tampak / Situasi Lahan ISSC

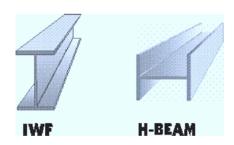
PT. DELTA SUPER,KSO

5.2 Data tanah (Uji sondir)

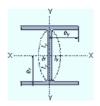
DUTCH CONE PENETROMETER TEST

No. Sondir : Titik Sondir S. 11 ISSC (X = 0484601 ; Y = 9872756)

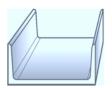
Pekerjaan : Perencanaan DED Gedung Lab. Terpadu II dan ISSC ITK

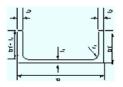

Lokasi : ITK Balikpapan Prov. Kaltim

M.A.T	: -m (D	aerah data	ran agak tinggi)		Tanggal	: 10 Agustus 2	2022
	Manomete	er Reading	Compressi	ve Strength	Total resistance	Accommission	
DEPTH	1st	2nd	Cone Resistance	Local Resistance	HL=(M ₂ -M ₁).C ₂ .L/l	Accumulative JHL = ΣHL	Friction Ratio
(Meter)	M ₁	M ₂	$M_1.C_0$	(M ₂ -M ₁).C ₁	(Kg/am)	(Kg/cm)	Friction Ratio
	(Kg/cm ²)	(Kg/cm ²)	(Kg/cm ²)	(Kg/cm ²)	(Ng/CIII)	(Ng/GIII)	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	2.00	3.00	2.02	0.09	1.77	1.77	4.43
40	3.00	5.00	3.03	0.18	3.54	5.31	5.90
60 80	7.00	9.00	7.08	0.18	3.54	8.85	2.53
1.00	10.00	13.00	10.11 10.11	0.27 0.27	5.31 5.31	14.16 19.47	2.66 2.66
20	8.00	10.00	8.09	0.18	3.54	23.01	2.21
40	8.00	10.00	8.09	0.18	3.54	26.55	2.21
60	7.00	9.00	7.08	0.18	3.54	30.09	2.53
80	7.00	9.00	7.08	0.18	3.54	33.63	2.53
2.00	9.00	11.00	9.10	0.18	3.54	37.17	1.97
20	12.00	15.00	12.14	0.27	5.31	42.48	2.21
40	15.00	18.00	15.17	0.27	5.31	47.79	1.77
60 80	15.00 15.00	18.00 18.00	15.17 15.17	0.27 0.27	5.31 5.31	53.10 58.41	1.77 1.77
3.00	16.00	20.00	16.18	0.35	7.08	65.49	2.21
20	16.00	20.00	16.18	0.35	7.08	72.57	2.21
40	18.00	22.00	18.20	0.35	7.08	79.65	1.97
60	20.00	24.00	20.23	0.35	7.08	86.73	1.77
80	20.00	24.00	20.23	0.35	7.08	93.81	1.77
4.00	22.00	27.00	22.25	0.44	8.85	102.66	2.01
20	28.00	33.00	28.32	0.44	8.85	111.51	1.58
40 60	32.00 40.00	38.00 47.00	32.36 40.45	0.53 0.62	10.62 12.39	122.13 134.52	1.66 1.55
80	52.00	60.00	52.59	0.71	14.16	148.68	1.36
5.00	68.00	78.00	68.77	0.89	17.70	166.39	1.30
20	90.00	102.00	91.02	1.06	21.24	187.63	1.18
40	94.00	106.00	95.07	1.06	21.24	208.87	1.13
60	103.00	115.00	104.17	1.06	21.24	230.11	1.03
80	110.00	122.00	111.25	1.06	21.24	251.35	0.97
6.00	110.00	122.00	111.25	1.06	21.24	272.59	0.97
20 40	112.00 115.00	125.00 128.00	113.27 116.30	1.15 1.15	23.01 23.01	295.60 318.61	1.03 1.00
60	118.00	130.00	119.34	1.06	21.24	339.85	0.90
80	120.00	133.00	121.36	1.15	23.01	362.86	0.96
7.00	120.00	133.00	121.36	1.15	23.01	385.87	0.96
20	122.00	135.00	123.38	1.15	23.01	408.88	0.94
40	136.00	150.00	137.54	1.24	24.78	433.66	0.91
60 80	145.00	160.00	146.64	1.33	26.55	460.21	0.92
8.00	142.00 112.00	155.00 124.00	143.61 113.27	1.15	23.01 21.24	483.23 504.47	0.81
20	115.00	128.00	116.30	1.15	23.01	527.48	1.00
40	128.00	142.00	129.45	1.24	24.78	552.26	0.97
60	165.00	185.00	166.87	1.77	35.40	587.66	1.07
80	215.00	240.00	217.44	2.21	44.25	631.91	1.03
9.00							
20							
40							
60 80							
10.00							
Remarks :	Dp. = Dia. Of	Piston =	3.56 cm	L = ReadingDistance	= 20 cm	Co. = (Dp/Dk) ² =	1.0113
- 1011-00-1100	Dk. = Dia. Of		3.54 cm	I = Length of Blanket		C1. = (Dp ² /4Ds.I) =	
	Ds. = Dia. Of		3.58 cm	. Larger or Endinot		C2. = (Dp ² /4.Ds) =	
	50. Dia. 01	warmer -	2.00 VIII			(-p (-123)	


LAMPIRAN IV KATALOG ATAU BROSUR

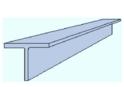
$Wide \; F \; lange \; S \; hape \;$





IIS G3192/T	ls 1227-194 lard Section	_		, u-sec	Secti	onal		Info	rmativo F	Reference	ME	tric Siz
Stalit	iai u Section	al Dilli	ension	_	Sectional		Coor	Modulus of				
Nominal Dimensional	HxB	ti	t2	-	Area	Unit Mass		etrical of inertia		us of 1 of area		tion
					Α	1	Ix	Iy	ix iy		Zx	Zy
mm x mm	mm x mm	mm	mm	mm	cm ²	kg/m	cm4	cm4	cm	cm	cm3	cm3
100 x 100	100 x 100	6	8	10	21.90	17.20	383	134.0	4.18	2.47	76.5	26.7
125 x 125	125 x 125	6.5	9	10	30.31	23.80	847	293.0	5.29	3.11	136.0	47.0
150 x 75	150 x 75	5	7	8	17.85	14.00	666	49.5	6.11	1.66	88.8	13.2
150 x 100	148 x 100	6	9	11	26.84	21.10	1 020	151.0	6.17	2.37	138.0	30.1
150 x 150	150 x 150	7	10	11	40.14	31.50	1 640	563.0	6.39	3.75	219.0	75.1
175 x 175	175 x 175	7.5	11	12	51.21	40.20	2 880	984.0	7.50	4.38	330.0	112.0
200 x 100	198 x 99	4.5	7	11	23.18	18.20	1 580	114.0	8.26	2.21	160.0	23.0
	200 x 100	5.5	8	11	27.16	21.30	1 840	134.0	8.24	2.22	184.0	26.8
200 x 150	194 x 150	6	9	12	38.80	30.60						
200 x 200	200 x 200	8	12	13	63.53	49.90	4 720	1 600	8.62	5.02	472.0	160.0
250 x 125	248 x 124	5	8	12	32.68	25.70	3 540	255.0	10.40	2.79	285.0	41.1
230 X 125	250 x 125	6	9	12	37.66	29.60	4 050	294.0	10.40	2.79	324.0	47.0
250 x 250	250 x 250	9	14	16	92.18	72.40	10 800	3 650	10.80	6.29	867.0	292.0
300 x 150	298 x 149	5.5	8	13	40.80	32.00	6 320	442.0	12.40	3.29	424.0	59.3
300 X 130	300 x 150	6.5	9	13	46.78	36.70	7 210	508.0	12.40	3.29	481.0	67.7
300 x 300	300 x 300	10	15	18	119.80	94.00	20 400	6 750	13.10	7.51	1 360	450.0
350 x 175	346 x 174	6	9	14	52.68	41.40	11 100	792.0	14.50	3.88	641.0	91.0
350 x 1/5	350 x 175	7	11	14	63.14	49.60	13 600	984.0	14.70	3.95	775.0	112.0
350 x 350	350 x 350	12	19	20	173.90	137.00	40 300	13 600	15.20	8.84	2 300	776.0

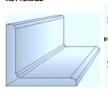
U-Channel


METRIC SIZI

Standard sectional dimension		Sectional area	Unit mass	Center of gravity	morr	Geometrical moment of inertia		Modulus of section		us of ition irea	Modulus of section		
AxB	t ₁	t2	Α	w	Су	k	ly	Zx	Zy	ix	iy	Zx	Zy
mm x mm	mm	mm	cm ²	kg/m	cm	cm ⁴	cm ⁴	cm ³	cm ³	cm	cm	cm ³	cm ³
75 x 40	5	7	8.818	6.92	1.27	75.9	12.4	20.2	4.54	2.93	1.19	20.2	4.54
100 x 50	5	7.5	11.92	9.36	1.55	189	26.9	37.8	7.82	3.98	1.50	37.8	7.82
125 x 65	6	8	17.11	13.40	1.94	425	65.5	68.0	14.40	4.99	1.96	68	14.4
150 x 75	6.5	10	23.71	18.60	2.31	864	122.0	115.0	23.60	6.04	2.27	115	23.6
150 x 75	9	12.5	30.59	24.00	2.31	1050	147.0	140.0	28.30	5.86	2.19	140	28.3
180 x 75	7	10.5	27.20	21.40	2.15	1380	137.0	150.0	25.50	7.13	2.24	150	25.5
200 x 70	7	10	26.92	21.10	1.85	1620	113.0	162.0	21.80	7.77	2.04	162	21.8
200 x 80	7.5	11	31.33	24.60	2.24	1950	177.0	195.0	30.80	7.89	2.38	195	30.8
200 x 90	8	13.5	38.65	30.30	2.77	2490	286.0	249.0	45.90	8.03	2.72	249	45.9
250 x 90	9	13	44.07	34.60	2.43	4180	306.0	335.0	46.50	9.74	2.64	335	46.5
250 x 90	11	14.5	51.17	40.20	2.39	4690	342.0	375.0	51.70	9.57	2.58	375	51.7
300 x 90	10	15.5	55.74	43.80	2.33	7400	373.0	494.0	56.00	11.50	2.54	494	56
300 x 90	12	16	61.90	48.60	2.25	7870	391.0	525.0	57.90	11.30	2.51	525	57.9
380 x 100	10.5	16	69.39	54.50	2.41	14500	557.0	762.0	73.30	14.50	2.83	762	73.3
380 x 100	13	16.5	78.96	62.00	2.29	15600	584.0	822.0	75.80	14.10	2.72	822	75.8
380 x 100	13	20	85.71	67.30	2.50	17600	671.0	924.0	89.50	14.30	2.80	924	89.5

T-Beam

CUT FROM HOT ROLLED WIDE FLANGE SHAPE



 ME	TR	10	0	17	

STAI	NDARD S	SECTION	NAL D	IMENS	ION			I	NFOR	MATIV	E RE			C SIZE
Section Index	Depth of Section	of	<u> </u>	ckness Corner Area Flange Radius		Sectional Area	Weight							lulus of tion
	Н	В	t ₁	t2	r	A		У	Ix	Iy	ix	iy	Zx	Zy
mm	mm	mm	mm	mm	mm	cm ²	kg/m	mm	cm4	cm4	cm	cm	cm3	cm3
T 50 x 100	50.0	100	6.0	8	10	10.95	8.60	40.0	16	67	1.20	2.47	4.0	13.4
T 62.5 x 125	62.5	125	6.5	9	10	15.16	11.90	50.6	35	147	1.51	3.11	6.9	23.5
T 75 x 75	75.0	75	5.0	7	8	8.93	7.00	57.0	42	25	2.18	1.67	7.4	6.6
T 75 x 150	75.0	150	7.0	10	11	20.07	15.75	61.3	66	282	1.81	3.75	10.8	37.6
T 100 x 100	100.0	100	5.5	8	11	13.58	10.65	71.7	114	67	2.90	2.22	14.8	13.4
T 99 x 100	99.0	100	4.5	7	11	11.59	9.10	78.1	94	58	2.84	2.25	12.0	11.7
T 87.5 x 175	87.50	175	7.5	11	12	25.61	20.10	72.0	114	492	2.11	4.38	15.8	56.2
T 100 x 200	100.00	200	8.0	12	13	31.77	24.95	82.7	184	801	2.41	5.02	22.2	80.1
T 125 x 125	125.00	125	6.0	9	12	18.83	14.80	97.2	248	147	3.63	2.79	25.5	23.5
T 124 x 124	124.00	124	5.0	8	12	16.34	12.85	97.7	207	127	3.56	2.79	21.2	20.5
T 125 x 250	125.00	250	9.0	14	16	46.09	36.20	104.2	411	1,825	2.98	6.29	39.4	146.0
T 150 x 150	150.00	150	6.5	9	13	23.39	18.35	115.9	463	254	4.45	3.29	39.9	33.8
T 149 x 149	149.00	149	5.5	8	13	20.40	16.00	116.4	393	221	4.39	3.29	33.7	29.6
T 150 x 300	150.00	300	10.0	15	18	59.90	47.00	125.3	796	3,378	3.64	7.51	63.5	225.2
T 175 x 175	175.00	175	7.0	11	14	31.57	24.80	137.5	814	492	5.08	3.95	59.2	56.3
T 173 x 174	173.00	174	6.0	9	14	26.34	20.70	136.0	678	396	5.07	3.88	49.9	45.5
T 175 x 350	175.00	350	12.0	19	20	86.95	68.85	146.4	1,515	6,794	4.17	8.84	103.5	388.2
T 200 x 200	200.00	200	8.0	13	16	42.06	33.00	157.7	1,395	868	5.76	4.54	88.5	86.8
T 198 x 199	198.00	199	7.0	11	16	36.08	28.30	156.3	1,193	723	5.75	4.48	76.5	72.7
* T 200 x 400	200.00	400	13.0	21	22	109.35	86.00	167.9	2,470	11,207	4.75	10.12	147.1	560.4

Equal Angle

PT. GUNUNG GARUDA
Steel 9s Our Bussines

								INFOR	MATIVE RE	ERENCE			
STANDA DI	RD SE IENSIO		NL.	SECTION AREA		CENTER OF GRAVITY	GEOME	TRICAL MON	IENT OF		S OF GY		MODULUS OF SECTION
HxB	t	r1	r2	A		Cx = Cy	Ix = Iy	Max Iu	Min Iv	ix = iy	Max iu	Min iv	Zx = Zy
mm x mm	mm	mm	mm	cm ²	kg/m	cm	cm ⁴	cm ⁴	cm ⁴	cm	cm	cm	cm ³
25 x 25	3	4	2	1.427	1.12	0.719	0.797	1.26	0.332	0.747	0.94	0.48	0.448
30 x 30	3	4	2	1.727	1.36	0.844	1.42	2.26	0.59	0.908	1.14	0.58	0.661
40 x 40	3	4.5	2	2.336	1.83	1.09	3.53	5.6	1.46	1.23	1.55	0.79	1.21
40 x 40	4	4.5	2	2.336	1.83	1.09	3.53	5.6	1.46	1.23	1.55	0.79	1.21
40 x 40	5	4.5	3	3.755	2.95	1.17	5.42	8.59	2.25	1.2	1.51	0.77	1.91
45 x 45	5	6.5	3	4.302	3.38	1.28	6.5	10.3	2.7	1.36	1.71	0.87	2
45 x 45	4	6.5	3	3.492	2.74	1.24	7.91	12.5	3.29	1.36	1.72	0.88	2.46
50 x 50	4	6.5	3	3.892	3.06	1.41	9.06	14.4	3.76	1.52	1.91	0.98	2.49
50 x 50	5	6.5	3	4.802	3.77	1.37	11.1	17.5	4.58	1.53	1.92	0.98	3.08
50 x 50	6	6.5	4.5	5.644	4.43	1.44	12.6	20	5.23	1.5	1.88	0.96	3.55
60 x 60	4	6.5	3	4.692	3.68	1.61	16	25.4	6.62	1.85	2.33	1.19	3.66
60 x 60	5	6.5	3	5.802	4.55	1.66	19.6	31.2	8.09	1.84	2.32	1.18	4.52
60 x 60	6	8	4	6.910	5.40	1.7	22.79	36.16	9.42	1.82	2.29	1.17	5.28
65 x 65	5	8.5	3	6.367	5.00	1.77	25.3	40.1	10.5	1.99	2.51	1.28	5.35
65 x 65	6	8.5	4	7.527	5.91	2.69	125	199	51.7	2.68	3.38	1.73	19.5
65 x 65	8	8.5	6	9.761	7.66	2.57	129	205	53.2	2.71	3.42	1.74	21.1
70 x 70	6	8.5	4	8.127	6.38	1.81	29.4	46.6	12.2	1.98	2.49	1.27	6.26
75 x 75	6	8.5	4	8.727	6.85	2.18	80.7	128	33.4	2.46	3.1	1.58	14.2
75 x 75	9	8.5	6	12.690	9.96	2.42	81.9	129	34.5	2.77	3,48	1.78	15.7
75 x 75	12	8.5	6	16.560	13.00	2.46	93	148	38.3	2.76	3.48	1.77	17.7
80 x 80	6	8.5	4	9,230	7.32	1.88	36.8	58.3	15.3	1.94	2,44	1.25	7,33
90 x 90	6	10	5	10.550	8.28	1.93	37.1	58.9	15.3	2.14	2.69	1.37	7.96
90 x 90	7	10	5	12.220	9.59	2.06	46.1	73.2	19	2.3	2.9	1.48	8.47
90 x 90	10	10	7	17.000	13.30	2.17	56.4	89.6	23.2	2.25	2.84	1.45	9.7
90 x 90	13	10	7	21.710	17.00	2.29	64.4	102	26.7	2.22	2.79	1.44	12.3
100 x 100	7	10	5	13.620	10.70	2.71	156	248	65.3	3.08	3.88	1.98	24.4
100 x 100	13	10	7	24.310	19.10	2,94	175	278	72	3	3.78	1.94	24.8
*100 x 100	10	10	7	19.000	14.90	2.82	220	348	91.1	3.04	3.83	1.95	29.5
120 x 120	8	12	5	18.760	14.70	3.24	258	410	106	3.71	4.67	2.38	31.1
*120 x 120	11	13	6.5	25.370	19.90	3.3	340	541	140	3.66	4.62	2.35	38.7
*120 x 120	12	13	6.5	27.540	21.60	3.4	366	583	150	3.65	4.6	2.35	39.36
*130 x 130	9	12	6	22.740	17.90	3.53	367	583	151	4.01	5.06	2.57	41.6

Pipe PT. GUNUNG RAJA PAKSI Steel % Our Business

Product	Out	side Diame	eter	Actual	Thickness	Pipe	Qty
Size	Min	Max	Mid	Roller	IIIICKIIESS	Weight	Bundle
			13.50		1.00	0.3083	
1/4 "			13.50		1.20	0.3640	
	13.20	13.80	13.50	13.60	1.50	0.4439	305
8 mm			13.50 13.50		1.80 2.00	0.5194 0.5672	l
			17.00		1.00	0.3083	
3/8 "			17.00		1.20	0.3083	l
	16.70	17.30	17.00	17.10	1.50	0.5734	305
10 mm	10.70	17.50	17.00	17.110	1.80	0.6747	555
10 111111			17.00		2.00	0.7398	
			21.35		1.00	0.5019	
1/2 "			21.35		1.20	0.5963	l
	21.00	21.70	21.35	22.20	1.50	0.7343	217
15 mm			21.35		1.80	0.8678	l
			21.35		2.00	0.9544	
3/4 "			26.80 26.80		1.00 1.20	0.6363 0.7576	l
3/4			26.80		1.50	0.7576	l
	26.40	27.20	26.80	27.00	1.80	1.1098	169
20 mm			26.80		2.00	1.2232	l
			26.80		2.20	1.3347	l
			33.60		1.00	0.8040	
1 "			33.60		1.20	0.9588	l
	33.20	34.00	33.60	33.50	1.50	1.1875	91
l	00.20		33.60		1.80	1.4116	
25 mm			33.60		2.00 2.20	1.5586 1.7036	l
			33.60 42.30		1.00	1.0185	
1 1/4 "			42.30		1.20	1.2163	l
1 -,			42.30		1.50	1.5093	
	41.90	42.70	42.30	42.20	1.80	1.7978	61
32 mm			42.30		2.00	1.9877	l
			42.30		2.30	2.2689	
			48.20		1.00	1.1640	
1 1/2 "		48.60	48.20		1.20	1.3909	
1	47.80		48.20	48.30	1.50	1.7275	61
40 mm			48.20 48.20		1.80 2.00	2.0597 2.2787	
40 111111			48.20		2.00	2.2/8/	

Weight = 3.1416 * (R12-R22) *6m 0.00785 kg (R = Middle)

LAMPIRAN IV GAMBAR KERJA