Pemodelan Single Neuron Menggunakan Modified Izhikevich Model Untuk Design Chip Neuromorphic

Ramadhana, Firman (2025) Pemodelan Single Neuron Menggunakan Modified Izhikevich Model Untuk Design Chip Neuromorphic. Bachelor thesis, Institut Teknologi Kalimantan.

[img] Text
04211027_Cover.pdf
Restricted to Repository staff only until 5 October 2027.

Download (334kB) | Request a copy
[img] Text
04211027_Statement_Of_Authenticity.pdf
Restricted to Repository staff only until 5 October 2027.

Download (613kB) | Request a copy
[img] Text
04211027_publishing_agreement.pdf
Restricted to Repository staff only until 5 October 2027.

Download (740kB) | Request a copy
[img] Text
04211027_Approval_Sheet.pdf
Restricted to Repository staff only until 5 October 2027.

Download (373kB) | Request a copy
[img] Text
04211027_Preface.pdf
Restricted to Repository staff only until 5 October 2027.

Download (763kB) | Request a copy
[img] Text
04211027_abstract_id.pdf
Restricted to Repository staff only until 5 October 2027.

Download (712kB) | Request a copy
[img] Text
04211027_abstract_en.pdf
Restricted to Repository staff only until 5 October 2027.

Download (581kB) | Request a copy
[img] Text
04211027_Table_of_Content.pdf
Restricted to Repository staff only until 5 October 2027.

Download (866kB) | Request a copy
[img] Text
04211027_Illustrations.pdf
Restricted to Repository staff only until 5 October 2027.

Download (637kB) | Request a copy
[img] Text
04211027_Tables.pdf
Restricted to Repository staff only until 5 October 2027.

Download (576kB) | Request a copy
[img] Text
04211027_Notations.pdf
Restricted to Repository staff only until 5 October 2027.

Download (753kB) | Request a copy
[img] Text
04211027_Chapter_1.pdf
Restricted to Repository staff only until 5 October 2027.

Download (2MB) | Request a copy
[img] Text
04211027_Chapter_2.pdf
Restricted to Repository staff only until 5 October 2027.

Download (7MB) | Request a copy
[img] Text
04211027_Chapter_3.pdf
Restricted to Repository staff only until 5 October 2027.

Download (4MB) | Request a copy
[img] Text
04211027_Chapter_4.pdf
Restricted to Repository staff only until 5 October 2027.

Download (9MB) | Request a copy
[img] Text
04211027_Conclusions.pdf
Restricted to Repository staff only until 5 October 2027.

Download (942kB) | Request a copy
[img] Text
04211027_Bibliography.pdf
Restricted to Repository staff only until 5 October 2027.

Download (1MB) | Request a copy
[img] Text
04211027_Enclosure.pdf
Restricted to Repository staff only until 5 October 2027.

Download (2MB) | Request a copy
[img] Text
04211027_Paper.pdf
Restricted to Repository staff only until 5 October 2027.

Download (2MB) | Request a copy
[img] Text
04211027_Presentation.pdf
Restricted to Repository staff only until 5 October 2027.

Download (6MB) | Request a copy
[img] Text
04211027_Form TA-020.pdf
Restricted to Repository staff only until 5 October 2027.

Download (651kB) | Request a copy

Abstract

Neuromorphic chip merupakan teknologi inovatif yang dirancang untuk meniru cara kerja otak manusia dalam memproses informasi secara efisien. Penelitian ini bertujuan untuk memodelkan neuron tunggal berbasis model Izhikevich yang dimodifikasi dengan metode Runge-Kutta, yang memiliki tingkat akurasi tinggi dalam menyelesaikan persamaan diferensial non-linear. Metode penelitian meliputi modifikasi persamaan Izhikevich dengan pendekatan Runge-Kutta, simulasi pola spiking neuron menggunakan MATLAB, serta implementasi digital dalam bahasa Verilog HDL melalui software Quartus Prime. Pengujian dilakukan dengan menganalisis parameter error seperti RMSE, MAE, MSE dan cross correlation, serta mengevaluasi penggunaan sumber daya FPGA untuk setiap model. Hasil menunjukkan bahwa model Runge-Kutta orde ke-empat menghasilkan nilai error terendah dengan rata-rata RMSE sebesar 5.7377 dan nilai cross correlation sebesar 0.8691 dengan lag sebanyak 32. Namun, model ini juga menggunakan sumber daya FPGA paling tinggi, yaitu 404 LUTs, 746 registers, dan 20 DSP blocks. Penelitian ini menunjukkan bahwa metode Runge-Kutta orde empat mampu menghasilkan model neuron yang akurat dan berpotensi dikembangkan dalam rancangan chip neuromorphic yang efisien.

Item Type: Thesis (Bachelor)
Subjects: T Technology > T Technology (General)
Divisions: Jurusan Teknologi Industri dan Proses > Teknik Elektro
Depositing User: Firman Ramadhana
Date Deposited: 11 Jul 2025 05:52
Last Modified: 11 Jul 2025 05:52
URI: http://repository.itk.ac.id/id/eprint/24316

Actions (login required)

View Item View Item