Deteksi Kesegaran Ikan Nila Berbasis Pengolahan Citra Digital Menggunakan Metode Convolutional Neural Network (CNN)

Apriany, Vidi (2026) Deteksi Kesegaran Ikan Nila Berbasis Pengolahan Citra Digital Menggunakan Metode Convolutional Neural Network (CNN). Bachelor thesis, Institut Teknologi Kalimantan.

[img] Text
04201092_cover.pdf
Restricted to Repository staff only until 25 January 2028.

Download (317kB) | Request a copy
[img] Text
04201092_statement_of_authenticity.pdf
Restricted to Repository staff only until 25 January 2028.

Download (468kB) | Request a copy
[img] Text
04201092_publishing_agreement.pdf
Restricted to Repository staff only until 25 January 2028.

Download (451kB) | Request a copy
[img] Text
04201092_approval_sheet.pdf
Restricted to Repository staff only until 25 February 2028.

Download (351kB) | Request a copy
[img] Text
04201092_preface.pdf
Restricted to Repository staff only until 25 January 2028.

Download (223kB) | Request a copy
[img] Text
04201092_abstract_id.pdf
Restricted to Repository staff only until 25 January 2028.

Download (229kB) | Request a copy
[img] Text
04201092_abstract_en.pdf
Restricted to Repository staff only until 25 January 2028.

Download (229kB) | Request a copy
[img] Text
04201092_table_of_content.pdf
Restricted to Repository staff only until 25 January 2028.

Download (280kB) | Request a copy
[img] Text
04201092_illustrations.pdf
Restricted to Repository staff only until 25 January 2028.

Download (205kB) | Request a copy
[img] Text
04201092_tables.pdf
Restricted to Repository staff only until 25 January 2028.

Download (150kB) | Request a copy
[img] Text
04201092_chapter_1.pdf
Restricted to Repository staff only until 25 January 2028.

Download (294kB) | Request a copy
[img] Text
04201092_chapter_2.pdf
Restricted to Repository staff only until 25 January 2028.

Download (613kB) | Request a copy
[img] Text
04201092_chapter_3.pdf
Restricted to Repository staff only until 25 January 2028.

Download (616kB) | Request a copy
[img] Text
04201092_chapter_4.pdf
Restricted to Repository staff only until 25 January 2028.

Download (1MB) | Request a copy
[img] Text
04201092_conclusions.pdf
Restricted to Repository staff only until 25 January 2028.

Download (249kB) | Request a copy
[img] Text
04201092_bibliography.pdf
Restricted to Repository staff only until 25 January 2028.

Download (242kB) | Request a copy
[img] Text
04201092_enclosure.pdf
Restricted to Repository staff only until 25 January 2028.

Download (1MB) | Request a copy
[img] Text
04201092_paper.pdf
Restricted to Repository staff only until 25 January 2028.

Download (1MB) | Request a copy
[img] Text
04201092_presentation.pdf
Restricted to Repository staff only until 25 January 2028.

Download (839kB) | Request a copy
[img] Text
04201092_Form. TA-020.pdf
Restricted to Repository staff only until 25 January 2028.

Download (150kB) | Request a copy

Abstract

Indonesia merupakan negara maritim dengan sumber daya ikan yang melimpah. Penentuan tingkat kesegaran ikan umumnya masih dilakukan secara manual oleh konsumen atau melalui pengujian mikrobiologi dan kimiawi yang memerlukan waktu dan peralatan khusus. Oleh karena itu, penelitian ini mengusulkan pendeteksian kesegaran ikan berbasis pengolahan citra digital menggunakan metode Convolutional Neural Network (CNN). Data yang digunakan berupa citra mata ikan nila yang diklasifikasikan ke dalam dua kelas, yaitu ikan segar dan ikan tidak segar. Tahapan penelitian meliputi preprocessing citra, pelatihan model CNN, serta pengujian performa model. Model dilatih selama 10 epoch dan dievaluasi menggunakan akurasi, confusion matrix, classification report, serta visualisasi hasil prediksi. Hasil pelatihan menunjukkan akurasi training sebesar 96% dan akurasi validasi sebesar 99,5% pada epoch terakhir. Pengujian terhadap 1.820 data uji menunjukkan bahwa seluruh data berhasil diklasifikasikan sesuai dengan kelasnya. Berdasarkan hasil tersebut, metode CNN dapat digunakan sebagai pendekatan pendukung dalam deteksi kesegaran ikan berbasis citra mata ikan sesuai dengan ruang lingkup data penelitian.

Item Type: Thesis (Bachelor)
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Jurusan Teknologi Industri dan Proses > Teknik Elektro
Depositing User: Vidi Apriany
Date Deposited: 08 Jan 2026 05:32
Last Modified: 08 Jan 2026 05:32
URI: http://repository.itk.ac.id/id/eprint/24972

Actions (login required)

View Item View Item