Implementasi Metode Speaker Attractor Multi-Center One-Class Learning Untuk Sistem Anti Spoofing Dataset Suara Bahasa Indonesia -Submit Jurnal

Amaliah, Adinia (2026) Implementasi Metode Speaker Attractor Multi-Center One-Class Learning Untuk Sistem Anti Spoofing Dataset Suara Bahasa Indonesia -Submit Jurnal. Bachelor thesis, Institut Teknologi Kalimantan.

[img] Text
11211003_cover.pdf
Restricted to Registered users only until 26 April 2028.

Download (319kB) | Request a copy
[img] Text
11211003_statement_of_authenticity.pdf
Restricted to Registered users only until 26 April 2028.

Download (290kB) | Request a copy
[img] Text
11211003_publishing_agreement.pdf
Restricted to Registered users only until 26 April 2028.

Download (350kB) | Request a copy
[img] Text
11211003_approval_sheet.pdf
Restricted to Registered users only until 26 April 2028.

Download (392kB) | Request a copy
[img] Text
11211003_preface.pdf
Restricted to Registered users only until 26 April 2028.

Download (464kB) | Request a copy
[img] Text
11211003_abstract_id.pdf
Restricted to Registered users only until 26 April 2028.

Download (326kB) | Request a copy
[img] Text
11211003_abstract_en.pdf
Restricted to Repository staff only until 26 April 2028.

Download (325kB) | Request a copy
[img] Text
11211003_table_of_content.pdf
Restricted to Repository staff only until 26 April 2028.

Download (511kB) | Request a copy
[img] Text
11211003_illustrations.pdf
Restricted to Repository staff only until 26 April 2028.

Download (286kB) | Request a copy
[img] Text
11211003_tables.pdf
Restricted to Repository staff only until 26 April 2028.

Download (282kB) | Request a copy
[img] Text
11211003_chapter_1.pdf
Restricted to Repository staff only until 26 April 2028.

Download (1MB) | Request a copy
[img] Text
11211003_chapter_2.pdf
Restricted to Repository staff only until 26 April 2028.

Download (3MB) | Request a copy
[img] Text
11211003_chapter-3.pdf
Restricted to Repository staff only until 26 April 2028.

Download (1MB) | Request a copy
[img] Text
11211003_chapter_4.pdf
Restricted to Repository staff only until 26 April 2028.

Download (5MB) | Request a copy
[img] Text
11211003_conclusions.pdf
Restricted to Repository staff only until 26 April 2028.

Download (589kB) | Request a copy
[img] Text
11211003_bibliography.pdf
Restricted to Registered users only until 26 April 2028.

Download (985kB) | Request a copy
[img] Text
11211003_paper.pdf
Restricted to Repository staff only until 26 April 2028.

Download (490kB) | Request a copy
[img] Text
11211003_Form. TA-020.pdf
Restricted to Repository staff only until 26 April 2028.

Download (381kB) | Request a copy
[img] Text
11211003_presentation.pdf
Restricted to Repository staff only until 26 April 2028.

Download (1MB) | Request a copy

Abstract

Teknologi Automatic Speaker Verification (ASV) menghadapi tantangan serius terkait kerentanannya terhadap serangan spoofing, seperti rekaman ulang, sintesis suara, dan konversi suara. Penelitian ini bertujuan mengembangkan sistem deteksi spoofing pada suara berbahasa Indonesia menggunakan kombinasi metode Audio Anti-Spoofing Using Integrated Spectro-Temporal Graph Attention Networks (AASIST) dan Speaker Attractor Multi-Center One-Class Learning (SAMO). Dataset yang digunakan meliputi TITML-IDN dan ASR-SINDODUSC untuk suara asli serta suara sintetis berbasis Text-to-Speech (TTS) menggunakan Resemble AI. AASIST memanfaatkan representasi spektral dan temporal untuk mendeteksi artefak audio yang khas, sementara SAMO meningkatkan akurasi dengan memodelkan keragaman suara asli dalam klister multi-center. Model dilatih menggunakan 1.966 sampel yang mencakup suara bonafide dan spoofed, dengan proses pelatihan 100 epoch dan evaluasi menggunakan metrik Equal Error Rate (EER). Hasil eksperimen menunjukkan bahwa model mengalami indikasi underfitting, di mana training loss cenderung tinggi sedangkan validation loss berada pada kisaran stabil. Evaluasi awal tanpa penambahan noise menghasilkan EER sebesar 0.4890, menandakan masih rendahnya kemampuan model dalam memisahkan suara asli dan suara palsu. Penelitian ini menambahkan noise dengan variasi sigma (σ = 0.1 sampai 0.4). Penambahan noise kecil menghasilkan perbaikan performa, di mana EER menurun menjadi 0.4449 pada σ = 0.1 dan mencapai nilai terbaik 0.4405 pada σ = 0.2. Sebaliknya, noise berlebih (σ = 0.3) justru merusak struktur distribusi skor sehingga EER meningkat hingga 0.5419 dan 0.5198. Analisis histogram menunjukkan bahwa noise kecil berperan sebagai regularisasi yang memperjelas separasi skor antar kelas, sementara noise besar menyebabkan tumpang tindih yang signifikan antara bonafide dan spoof.

Item Type: Thesis (Bachelor)
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Q Science > QA Mathematics > QA76 Computer software
Divisions: Jurusan Matematika dan Teknologi Informasi > Informatika
Depositing User: Adinia Amaliah
Date Deposited: 09 Jan 2026 05:48
Last Modified: 09 Jan 2026 05:48
URI: http://repository.itk.ac.id/id/eprint/25087

Actions (login required)

View Item View Item