Hamzah, Muhammad Ilham Hasby (2023) OPTIMASI MPPT DENGAN MENGGUNAKAN METODE HYBRID ANN-PSO UNTUK MENJAGA EFISIENSI PANEL SURYA - Submit Jurnal/Seminar. Bachelor thesis, Institut Teknologi Kalimantan.
Text
04191050_cover.pdf Restricted to Registered users only until 7 January 2025. Download (88kB) | Request a copy |
|
Text
04191050_ statement_of_authenticity.pdf Restricted to Registered users only until 7 January 2025. Download (297kB) | Request a copy |
|
Text
04191050_publishing_agreement.pdf Restricted to Registered users only until 7 January 2025. Download (323kB) | Request a copy |
|
Text
04191050_approval_sheet.pdf Restricted to Registered users only until 7 January 2025. Download (429kB) | Request a copy |
|
Text
04191050_preface.pdf Restricted to Registered users only until 7 January 2025. Download (500kB) | Request a copy |
|
Text
04191050_abstract_id.pdf Restricted to Registered users only until 7 January 2025. Download (242kB) | Request a copy |
|
Text
04191050_abstract_en.pdf Restricted to Repository staff only until 7 January 2025. Download (242kB) | Request a copy |
|
Text
04191050_table_of_content.pdf Restricted to Repository staff only until 7 January 2025. Download (249kB) | Request a copy |
|
Text
04191050_illustrations.pdf Restricted to Repository staff only until 7 January 2025. Download (248kB) | Request a copy |
|
Text
04191050_tables.pdf Restricted to Repository staff only until 7 January 2025. Download (241kB) | Request a copy |
|
Text
04191050_notations.pdf Restricted to Repository staff only until 7 January 2025. Download (396kB) | Request a copy |
|
Text
04191050_chapter_1.pdf Restricted to Repository staff only until 7 January 2025. Download (458kB) | Request a copy |
|
Text
04191050_chapter_2.pdf Restricted to Repository staff only until 7 January 2025. Download (855kB) | Request a copy |
|
Text
04191050_chapter_3.pdf Restricted to Repository staff only until 7 January 2025. Download (982kB) | Request a copy |
|
Text
04191050_chapter_4.pdf Restricted to Repository staff only until 7 January 2025. Download (1MB) | Request a copy |
|
Text
04191050_conclusions.pdf Restricted to Repository staff only until 7 January 2025. Download (364kB) | Request a copy |
|
Text
04191050_bibliography.pdf Restricted to Registered users only until 7 January 2025. Download (362kB) | Request a copy |
|
Text
04191050_enclosure.pdf Restricted to Repository staff only until 7 January 2025. Download (1MB) | Request a copy |
|
Text
04191050_paper.pdf Restricted to Repository staff only until 7 January 2025. Download (854kB) | Request a copy |
|
Text
04191050_presentation.pdf Restricted to Repository staff only until 7 January 2025. Download (1MB) | Request a copy |
|
Text
04191050_Form TA-020.pdf Restricted to Repository staff only until 7 January 2025. Download (236kB) | Request a copy |
Abstract
Maximum Power Point Tracking (MPPT) merupakan suatu algoritma yang digunakan untuk melacak letak titik tegangan dan arus listrik optimal panel surya, sehingga daya optimal dapat dicapai. Pada penelitian ini, dilakukan perancangan desain sistem MPPT dengan metode hybrid menggunakan Artificial Neural Network (ANN) dengan integrasi algoritma metaheuristik Particle Swarm Optimization (PSO). Perancangan ini dilakukan selain untuk menentukan titik daya maksimum, serta menyelesaikan permasalahan optimasi dan efisiensi pada panel surya berdasarkan perubahan variabel iradiasi (G) dan temperatur (T) dari matahari, juga dilakukan perbandingan terhadap metode ANN konvensional yang digunakan. Dalam penelitian ini, parameter yang diukur meliputi; arus (I), tegangan (V), dan daya (W) dari sistem MPPT. Penelitian dilakukan dengan mendesain simulasi menggunakan Konverter DC-DC tipe Buck-Boost melalui Software Simulink/MATLAB. Hasil penelitian menunjukkan performa dari desain sistem MPPT ANN-PSO memiliki hasil yang lebih baik, dan mudah untuk diimplementasikan dibandingkan dengan metode ANN konvensional, dimana nilai indeks error MSE dan RMSE yang dihasilkan sangat kecil. Serta kinerja dari sistem MPPT ANN-PSO mampu menjaga efisiensi beban sekitar 51% untuk data pengukuran, dan pada data simulasi sekitar 67% lebih baik dan akurat.
Item Type: | Thesis (Bachelor) |
---|---|
Subjects: | T Technology > T Technology (General) |
Divisions: | Jurusan Teknologi Industri dan Proses > Teknik Elektro |
Depositing User: | Muhammad Ilham Hasby Hamzah |
Date Deposited: | 20 Jul 2023 08:45 |
Last Modified: | 20 Jul 2023 08:45 |
URI: | http://repository.itk.ac.id/id/eprint/19825 |
Actions (login required)
View Item |