OPTIMASI MPPT DENGAN MENGGUNAKAN METODE HYBRID ANN-PSO UNTUK MENJAGA EFISIENSI PANEL SURYA - Submit Jurnal/Seminar

Hamzah, Muhammad Ilham Hasby (2023) OPTIMASI MPPT DENGAN MENGGUNAKAN METODE HYBRID ANN-PSO UNTUK MENJAGA EFISIENSI PANEL SURYA - Submit Jurnal/Seminar. Bachelor thesis, Institut Teknologi Kalimantan.

[img] Text
04191050_cover.pdf
Restricted to Registered users only until 7 January 2025.

Download (88kB) | Request a copy
[img] Text
04191050_ statement_of_authenticity.pdf
Restricted to Registered users only until 7 January 2025.

Download (297kB) | Request a copy
[img] Text
04191050_publishing_agreement.pdf
Restricted to Registered users only until 7 January 2025.

Download (323kB) | Request a copy
[img] Text
04191050_approval_sheet.pdf
Restricted to Registered users only until 7 January 2025.

Download (429kB) | Request a copy
[img] Text
04191050_preface.pdf
Restricted to Registered users only until 7 January 2025.

Download (500kB) | Request a copy
[img] Text
04191050_abstract_id.pdf
Restricted to Registered users only until 7 January 2025.

Download (242kB) | Request a copy
[img] Text
04191050_abstract_en.pdf
Restricted to Repository staff only until 7 January 2025.

Download (242kB) | Request a copy
[img] Text
04191050_table_of_content.pdf
Restricted to Repository staff only until 7 January 2025.

Download (249kB) | Request a copy
[img] Text
04191050_illustrations.pdf
Restricted to Repository staff only until 7 January 2025.

Download (248kB) | Request a copy
[img] Text
04191050_tables.pdf
Restricted to Repository staff only until 7 January 2025.

Download (241kB) | Request a copy
[img] Text
04191050_notations.pdf
Restricted to Repository staff only until 7 January 2025.

Download (396kB) | Request a copy
[img] Text
04191050_chapter_1.pdf
Restricted to Repository staff only until 7 January 2025.

Download (458kB) | Request a copy
[img] Text
04191050_chapter_2.pdf
Restricted to Repository staff only until 7 January 2025.

Download (855kB) | Request a copy
[img] Text
04191050_chapter_3.pdf
Restricted to Repository staff only until 7 January 2025.

Download (982kB) | Request a copy
[img] Text
04191050_chapter_4.pdf
Restricted to Repository staff only until 7 January 2025.

Download (1MB) | Request a copy
[img] Text
04191050_conclusions.pdf
Restricted to Repository staff only until 7 January 2025.

Download (364kB) | Request a copy
[img] Text
04191050_bibliography.pdf
Restricted to Registered users only until 7 January 2025.

Download (362kB) | Request a copy
[img] Text
04191050_enclosure.pdf
Restricted to Repository staff only until 7 January 2025.

Download (1MB) | Request a copy
[img] Text
04191050_paper.pdf
Restricted to Repository staff only until 7 January 2025.

Download (854kB) | Request a copy
[img] Text
04191050_presentation.pdf
Restricted to Repository staff only until 7 January 2025.

Download (1MB) | Request a copy
[img] Text
04191050_Form TA-020.pdf
Restricted to Repository staff only until 7 January 2025.

Download (236kB) | Request a copy

Abstract

Maximum Power Point Tracking (MPPT) merupakan suatu algoritma yang digunakan untuk melacak letak titik tegangan dan arus listrik optimal panel surya, sehingga daya optimal dapat dicapai. Pada penelitian ini, dilakukan perancangan desain sistem MPPT dengan metode hybrid menggunakan Artificial Neural Network (ANN) dengan integrasi algoritma metaheuristik Particle Swarm Optimization (PSO). Perancangan ini dilakukan selain untuk menentukan titik daya maksimum, serta menyelesaikan permasalahan optimasi dan efisiensi pada panel surya berdasarkan perubahan variabel iradiasi (G) dan temperatur (T) dari matahari, juga dilakukan perbandingan terhadap metode ANN konvensional yang digunakan. Dalam penelitian ini, parameter yang diukur meliputi; arus (I), tegangan (V), dan daya (W) dari sistem MPPT. Penelitian dilakukan dengan mendesain simulasi menggunakan Konverter DC-DC tipe Buck-Boost melalui Software Simulink/MATLAB. Hasil penelitian menunjukkan performa dari desain sistem MPPT ANN-PSO memiliki hasil yang lebih baik, dan mudah untuk diimplementasikan dibandingkan dengan metode ANN konvensional, dimana nilai indeks error MSE dan RMSE yang dihasilkan sangat kecil. Serta kinerja dari sistem MPPT ANN-PSO mampu menjaga efisiensi beban sekitar 51% untuk data pengukuran, dan pada data simulasi sekitar 67% lebih baik dan akurat.

Item Type: Thesis (Bachelor)
Subjects: T Technology > T Technology (General)
Divisions: Jurusan Teknologi Industri dan Proses > Teknik Elektro
Depositing User: Muhammad Ilham Hasby Hamzah
Date Deposited: 20 Jul 2023 08:45
Last Modified: 20 Jul 2023 08:45
URI: http://repository.itk.ac.id/id/eprint/19825

Actions (login required)

View Item View Item