Cahyani, Jumina (2022) Prediksi Harga Bahan Pokok Nasional dengan Metode Long Short Term Memory (LSTM) - Submit Journal/Konferensi. Bachelor thesis, Institut Teknologi Kalimantan.
Text
11181040_cover.pdf Download (502kB) |
|
Text
11181040_abstract_id.pdf Download (446kB) |
|
Text
11181040_abstract_en.pdf Restricted to Registered users only until 1 October 2023. Download (391kB) | Request a copy |
|
Text
11181040_statement_of_authenticity.pdf Restricted to Repository staff only until 1 October 2023. Download (814kB) | Request a copy |
|
Text
1118140_publishing_agreement.pdf Restricted to Registered users only until 1 October 2023. Download (568kB) | Request a copy |
|
Text
11181040_preface.pdf Restricted to Registered users only until 1 October 2023. Download (577kB) | Request a copy |
|
Text
11181040_approval_sheet.pdf Restricted to Registered users only until 1 October 2023. Download (534kB) | Request a copy |
|
Text
11181040_table_of_content.pdf Restricted to Registered users only until 1 October 2023. Download (596kB) | Request a copy |
|
Text
11181040_illustrations.pdf Restricted to Registered users only until 1 October 2023. Download (400kB) | Request a copy |
|
Text
11181040_tables.pdf Restricted to Registered users only until 1 October 2023. Download (1MB) | Request a copy |
|
Text
11181040_chapter_1.pdf Restricted to Registered users only until 1 October 2023. Download (1MB) | Request a copy |
|
Text
11181040_chapter_2.pdf Restricted to Registered users only until 1 October 2023. Download (5MB) | Request a copy |
|
Text
11181040_chapter_3.pdf Restricted to Registered users only until 1 October 2023. Download (3MB) | Request a copy |
|
Text
11181040_chapter_4.pdf Restricted to Registered users only until 1 October 2023. Download (1MB) | Request a copy |
|
Text
11181040_conclusions.pdf Restricted to Registered users only until 1 October 2023. Download (666kB) | Request a copy |
|
Text
11181040_bibliography.pdf Restricted to Registered users only until 1 October 2023. Download (1MB) | Request a copy |
|
Text
11181040_enclosure.pdf Restricted to Registered users only until 1 October 2023. Download (485kB) | Request a copy |
|
Text
1118140_form020.pdf Restricted to Repository staff only until 1 October 2023. Download (568kB) | Request a copy |
|
Text
111810140_paper.pdf Restricted to Repository staff only until 1 October 2023. Download (1MB) | Request a copy |
Abstract
Pada masa pandemi seperti saat ini, diperlukan suatu upaya untuk menjaga harga bahan pokok di Indonesia agar tetap stabil. Salah satu caranya adalah dengan meninjau dan memprediksi harga di masa depan sebagai bentuk antisipasi dalam menentukan kebijakan jika terjadi kenaikan harga bahan pokok. Penelitian ini memprediksi harga bahan pokok nasional dengan metode Long Short Term Memory (LSTM). LSTM ialah metode yang dikembangkan dari metode Reccurent Neural Network (RNN) untuk mengatasi masalah mengenai hilangnya gradien pada saat memperbarui bobot pada urutan data yang panjang. Uji coba kinerja pada prediksi harga bahan pokok menggunakan metode LSTM ini dilakukan perbandingan dengan metode RNN. Uji coba juga dilakukan pada penggunaan metode optimasi untuk mendapatkan model terbaik, yaitu ADAM, AdaGrad, dan RMSProp. Berdasarkan hasil penelitian, diperoleh bahwa kinerja metode LSTM lebih baik daripada RNN dalam prediksi harga bahan pokok. Model terbaik untuk prediksi harga daging ayam ras segar diperoleh dengan metode optimasi ADAM, komposisi dataset sebesar 70%:30%, nilai RMSE sebesar 0.0937 dan R2 Score sebesar 0.5949. Pada harga beras kualitas bawah II model terbaik diperoleh dengan metode ADAM dan RMSProp yang mana komposisi dataset nya sebesar 70%:30%, nilai RMSE sebesar 0.0492 dan R2 Score sebesar 0.8852. Pada harga minyak goreng didapatkan model terbaik dengan metode optimasi RMSProp, skenario pemisahan dataset sebesar 90%:10%, nilai RMSE sebesar 0.0313 dan R2 Score sebesar 0.7492. Sedangkan pada harga minyak goreng curah didapatkan model terbaik dengan metode ADAM dan skenario pemisahan dataset sebesar 80%:20%, nilai RMSE sebesar 0.0531 dan R2 Score sebesar 0.5308.
Item Type: | Thesis (Bachelor) |
---|---|
Subjects: | T Technology > T Technology (General) |
Divisions: | Jurusan Matematika dan Teknologi Informasi > Informatika |
Depositing User: | Jumina Cahyani |
Date Deposited: | 06 Jul 2022 01:18 |
Last Modified: | 06 Jul 2022 01:18 |
URI: | http://repository.itk.ac.id/id/eprint/17955 |
Actions (login required)
View Item |