Febriandini, Nanda Clariza (2025) Dekomposisi H-Super Ajaib dari Graf Pohon Pisang Bm,n-Submit Barekeng, Journal of Mathematics and Its Application. Bachelor thesis, Institut Teknologi Kalimantan.
| 
              
Text
 02211013_abstract_en.pdf Restricted to Repository staff only until 26 April 2027. Download (241kB) | Request a copy  | 
          |
| 
              
Text
 02211013_abstract_id.pdf Download (241kB)  | 
          |
| 
              
Text
 02211013_approval_sheet.pdf Download (287kB)  | 
          |
| 
              
Text
 02211013_bibliography.pdf Download (477kB)  | 
          |
| 
              
Text
 02211013_chapter_1.pdf Restricted to Repository staff only until 26 April 2027. Download (892kB) | Request a copy  | 
          |
| 
              
Text
 02211013_chapter_2.pdf Restricted to Repository staff only until 26 April 2027. Download (3MB) | Request a copy  | 
          |
| 
              
Text
 02211013_chapter_3.pdf Restricted to Repository staff only until 26 April 2027. Download (696kB) | Request a copy  | 
          |
| 
              
Text
 02211013_chapter_4.pdf Restricted to Repository staff only until 26 April 2027. Download (4MB) | Request a copy  | 
          |
| 
              
Text
 02211013_conclusions.pdf Restricted to Repository staff only until 26 April 2027. Download (349kB) | Request a copy  | 
          |
| 
              
Text
 02211013_cover.pdf Download (288kB)  | 
          |
| 
              
Text
 02211013_Form. TA-020.pdf Restricted to Repository staff only until 26 April 2027. Download (137kB) | Request a copy  | 
          |
| 
              
Text
 02211013_illutsrations.pdf Restricted to Repository staff only until 26 April 2027. Download (437kB) | Request a copy  | 
          |
| 
              
Text
 02211013_notations.pdf Restricted to Repository staff only until 26 April 2027. Download (401kB) | Request a copy  | 
          |
| 
              
Text
 02211013_paper.pdf Restricted to Repository staff only until 26 April 2027. Download (1MB) | Request a copy  | 
          |
| 
              
Text
 02211013_preface.pdf Download (638kB)  | 
          |
| 
              
Text
 02211013_publishing_agreement.pdf Download (310kB)  | 
          |
| 
              
Text
 02211013_statement_of_authenticity.pdf Download (392kB)  | 
          |
| 
              
Text
 02211013_table_of_content.pdf Restricted to Repository staff only until 26 April 2027. Download (439kB) | Request a copy  | 
          |
| 
              
Text
 02211013_tables.pdf Restricted to Repository staff only until 26 April 2027. Download (257kB) | Request a copy  | 
          |
| 
              
Text
 02211013_presentation.pdf Restricted to Repository staff only until 26 April 2027. Download (2MB) | Request a copy  | 
          |
| 
              
Text
 02211013_cover1.pdf Download (119kB)  | 
          
Abstract
Dekomposisi super ajaib pada graf dibahas sebagai salah satu topik utama dalam teori graf, yang bertujuan untuk mengatur pelabelan titik dan sisi graf secara sistematis. Dalam penelitian ini, graf G dibentuk dari beberapa subgraf identik G_i (dengan i=1,2,…,m), di mana pelabelan total berjumlah sama diterapkan pada masing-masing subgraf tersebut. Gabugan dari semua subgraf tersebut digunakan untuk membentuk graf G. Pelabelan graf dilakukan dengan menggunakan fungsi bijektif f:V(G)∪E(G)⟶{1,2,…,|V(G)|+|E(G)|}, sedangkan bobot dari masing-masing subgraf dinyatakan melalui konstanta ajaib k=∑_(v∈V(G_i ),e∈E(G_i ) )▒〖(f(v)+f(e))〗 yang berlaku untuk semua i. Graf bintang S_n, yang digunakan dalam penelitian ini, didefinisikan sebagai graf sederhana dengan n+1 titik, di mana satu titik memiliki derajat n, sementara titik lainnya memiliki derajat 1. Selain itu, graf pohon pisang B_(m,n) juga digunakan sebagai objek dalam penelitian utama karena memiliki struktur yang lebih kompleks dibandingkan graf bintang. Pada bagian akhir, teorema terkait dekomposisi super ajaib pada graf B_(m,n) disajikan. Hasil penelitian menunjukkan bahwa dekomposisi super ajaib pada graf B_(m,n) dapat ditentukan berdasarkan fungsi pelabelan yang telah ditetapkan sebelumnya. Dengan fungsi tersebut, diperoleh teorema w_n (H_i )=2mn^2+4mn+2m+3n+4 untuk setiap n≥3 dan m≥2. Penelitian ini diharapkan dapat memberikan kontribusi signifikkan terhadap pegembangan teori graf, khususnya dalam penerapan pelabelan super ajaib pada graf dengan struktur yang lebih kompleks, serta aplikasinya dalam berbagai bidang ilmu.
| Item Type: | Thesis (Bachelor) | 
|---|---|
| Subjects: | Q Science > QA Mathematics | 
| Divisions: | Jurusan Matematika dan Teknologi Informasi > Matematika | 
| Depositing User: | Nanda Clariza Febriandini | 
| Date Deposited: | 14 Jan 2025 06:27 | 
| Last Modified: | 14 Jan 2025 07:01 | 
| URI: | http://repository.itk.ac.id/id/eprint/22369 | 
Actions (login required)
![]()  | 
        View Item | 
